{"title":"基于频响估计的稳定裕度在线辨识","authors":"Yuhang Wang, Mengyu Liu, Kunfeng Lu, Huiping Zhang, Xingda Xia","doi":"10.1109/GNCC42960.2018.9019003","DOIUrl":null,"url":null,"abstract":"In order to improve the control performance of the aircraft and achieve on-line control, it is necessary to obtain the stability margin of the system in real time and design online attitude controller. In this paper, the stability margin online identification method is studied. Based on the Chirp-Z transform and frequency response estimation method, excitation signals are added to obtain the system’s stability margin online. Simulation results show that the method proposed has high recognition accuracy and can be applied to real aircraft and used in online controller design.","PeriodicalId":6623,"journal":{"name":"2018 IEEE CSAA Guidance, Navigation and Control Conference (CGNCC)","volume":"32 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Online Identification of Stability Margin Based on Frequency Response Estimation\",\"authors\":\"Yuhang Wang, Mengyu Liu, Kunfeng Lu, Huiping Zhang, Xingda Xia\",\"doi\":\"10.1109/GNCC42960.2018.9019003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to improve the control performance of the aircraft and achieve on-line control, it is necessary to obtain the stability margin of the system in real time and design online attitude controller. In this paper, the stability margin online identification method is studied. Based on the Chirp-Z transform and frequency response estimation method, excitation signals are added to obtain the system’s stability margin online. Simulation results show that the method proposed has high recognition accuracy and can be applied to real aircraft and used in online controller design.\",\"PeriodicalId\":6623,\"journal\":{\"name\":\"2018 IEEE CSAA Guidance, Navigation and Control Conference (CGNCC)\",\"volume\":\"32 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE CSAA Guidance, Navigation and Control Conference (CGNCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GNCC42960.2018.9019003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE CSAA Guidance, Navigation and Control Conference (CGNCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GNCC42960.2018.9019003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Online Identification of Stability Margin Based on Frequency Response Estimation
In order to improve the control performance of the aircraft and achieve on-line control, it is necessary to obtain the stability margin of the system in real time and design online attitude controller. In this paper, the stability margin online identification method is studied. Based on the Chirp-Z transform and frequency response estimation method, excitation signals are added to obtain the system’s stability margin online. Simulation results show that the method proposed has high recognition accuracy and can be applied to real aircraft and used in online controller design.