P. Hillger, R. Jain, J. Grzyb, L. Mavarani, B. Heinemann, G. MacGrogan, P. Mounaix, T. Zimmer, U. Pfeiffer
{"title":"用于0.13μm SiGe BiCMOS的128像素0.56THz实时近场成像传感阵列","authors":"P. Hillger, R. Jain, J. Grzyb, L. Mavarani, B. Heinemann, G. MacGrogan, P. Mounaix, T. Zimmer, U. Pfeiffer","doi":"10.1109/ISSCC.2018.8310362","DOIUrl":null,"url":null,"abstract":"Real-time terahertz video cameras are regarded as key enabler systems for numerous applications. Unfortunately, their spatial resolution is fundamentally restricted by the diffraction limit. Near-field-scanning optical microscopy (NSOM) is used in the THz domain to break through this limit [1]. Recently reported THz near-field sensors based on silicon technology promise significant improvements compared to NSOM with respect to sensor sensitivity, system cost, and scanning time [2,3]. However, only single-pixel implementations have been presented with unmodulated CW sources so far, which limits the sensors dynamic range (DR) due to detector 1/f noise. This paper scales-up the research of near-field sensing into larger surfaces made of a plurality of super-resolution pixels with video-rate imaging capabilities. The 128-pixel 0.56THz imaging array includes all functions such as illumination, sensing, detection, and digital readout on a single silicon chip.","PeriodicalId":6617,"journal":{"name":"2018 IEEE International Solid - State Circuits Conference - (ISSCC)","volume":"31 1","pages":"418-420"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"A 128-pixel 0.56THz sensing array for real-time near-field imaging in 0.13μm SiGe BiCMOS\",\"authors\":\"P. Hillger, R. Jain, J. Grzyb, L. Mavarani, B. Heinemann, G. MacGrogan, P. Mounaix, T. Zimmer, U. Pfeiffer\",\"doi\":\"10.1109/ISSCC.2018.8310362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Real-time terahertz video cameras are regarded as key enabler systems for numerous applications. Unfortunately, their spatial resolution is fundamentally restricted by the diffraction limit. Near-field-scanning optical microscopy (NSOM) is used in the THz domain to break through this limit [1]. Recently reported THz near-field sensors based on silicon technology promise significant improvements compared to NSOM with respect to sensor sensitivity, system cost, and scanning time [2,3]. However, only single-pixel implementations have been presented with unmodulated CW sources so far, which limits the sensors dynamic range (DR) due to detector 1/f noise. This paper scales-up the research of near-field sensing into larger surfaces made of a plurality of super-resolution pixels with video-rate imaging capabilities. The 128-pixel 0.56THz imaging array includes all functions such as illumination, sensing, detection, and digital readout on a single silicon chip.\",\"PeriodicalId\":6617,\"journal\":{\"name\":\"2018 IEEE International Solid - State Circuits Conference - (ISSCC)\",\"volume\":\"31 1\",\"pages\":\"418-420\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Solid - State Circuits Conference - (ISSCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCC.2018.8310362\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Solid - State Circuits Conference - (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2018.8310362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 128-pixel 0.56THz sensing array for real-time near-field imaging in 0.13μm SiGe BiCMOS
Real-time terahertz video cameras are regarded as key enabler systems for numerous applications. Unfortunately, their spatial resolution is fundamentally restricted by the diffraction limit. Near-field-scanning optical microscopy (NSOM) is used in the THz domain to break through this limit [1]. Recently reported THz near-field sensors based on silicon technology promise significant improvements compared to NSOM with respect to sensor sensitivity, system cost, and scanning time [2,3]. However, only single-pixel implementations have been presented with unmodulated CW sources so far, which limits the sensors dynamic range (DR) due to detector 1/f noise. This paper scales-up the research of near-field sensing into larger surfaces made of a plurality of super-resolution pixels with video-rate imaging capabilities. The 128-pixel 0.56THz imaging array includes all functions such as illumination, sensing, detection, and digital readout on a single silicon chip.