非谐波振子的动量间隔分布与高阶有限温度艾里核

IF 1.5 Q2 PHYSICS, MATHEMATICAL
Thomas Bothner, M. Cafasso, Sofia Tarricone
{"title":"非谐波振子的动量间隔分布与高阶有限温度艾里核","authors":"Thomas Bothner, M. Cafasso, Sofia Tarricone","doi":"10.1214/21-aihp1211","DOIUrl":null,"url":null,"abstract":"We rigorously compute the integrable system for the limiting $(N\\rightarrow\\infty)$ distribution function of the extreme momentum of $N$ noninteracting fermions when confined to an anharmonic trap $V(q)=q^{2n}$ for $n\\in\\mathbb{Z}_{\\geq 1}$ at positive temperature. More precisely, the edge momentum statistics in the harmonic trap $n=1$ are known to obey the weak asymmetric KPZ crossover law which is realized via the finite temperature Airy kernel determinant or equivalently via a Painlev\\'e-II integro-differential transcendent, cf. \\cite{LW,ACQ}. For general $n\\geq 2$, a novel higher order finite temperature Airy kernel has recently emerged in physics literature \\cite{DMS} and we show that the corresponding edge law in momentum space is now governed by a distinguished Painlev\\'e-II integro-differential hierarchy. Our analysis is based on operator-valued Riemann-Hilbert techniques which produce a Lax pair for an operator-valued Painlev\\'e-II ODE system that naturally encodes the aforementioned hierarchy. As byproduct, we establish a connection of the integro-differential Painlev\\'e-II hierarchy to a novel integro-differential mKdV hierarchy.","PeriodicalId":42884,"journal":{"name":"Annales de l Institut Henri Poincare D","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2021-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Momenta spacing distributions in anharmonic oscillators and the higher order finite temperature Airy kernel\",\"authors\":\"Thomas Bothner, M. Cafasso, Sofia Tarricone\",\"doi\":\"10.1214/21-aihp1211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We rigorously compute the integrable system for the limiting $(N\\\\rightarrow\\\\infty)$ distribution function of the extreme momentum of $N$ noninteracting fermions when confined to an anharmonic trap $V(q)=q^{2n}$ for $n\\\\in\\\\mathbb{Z}_{\\\\geq 1}$ at positive temperature. More precisely, the edge momentum statistics in the harmonic trap $n=1$ are known to obey the weak asymmetric KPZ crossover law which is realized via the finite temperature Airy kernel determinant or equivalently via a Painlev\\\\'e-II integro-differential transcendent, cf. \\\\cite{LW,ACQ}. For general $n\\\\geq 2$, a novel higher order finite temperature Airy kernel has recently emerged in physics literature \\\\cite{DMS} and we show that the corresponding edge law in momentum space is now governed by a distinguished Painlev\\\\'e-II integro-differential hierarchy. Our analysis is based on operator-valued Riemann-Hilbert techniques which produce a Lax pair for an operator-valued Painlev\\\\'e-II ODE system that naturally encodes the aforementioned hierarchy. As byproduct, we establish a connection of the integro-differential Painlev\\\\'e-II hierarchy to a novel integro-differential mKdV hierarchy.\",\"PeriodicalId\":42884,\"journal\":{\"name\":\"Annales de l Institut Henri Poincare D\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales de l Institut Henri Poincare D\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/21-aihp1211\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales de l Institut Henri Poincare D","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/21-aihp1211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 13

摘要

我们严格地计算了$N$非相互作用费米子的极限动量的可积系统的极限$(N\rightarrow\infty)$分布函数,当限制在一个非调和阱$V(q)=q^{2n}$对于$n\in\mathbb{Z}_{\geq 1}$在正温度下。更准确地说,已知谐波阱$n=1$中的边缘动量统计服从弱非对称KPZ交叉律,该交叉律通过有限温度Airy核行列式或等效地通过painlev - ii积分-微分超越来实现,参见\cite{LW,ACQ}。对于一般的$n\geq 2$,最近在物理文献中出现了一种新的高阶有限温度Airy核\cite{DMS},我们证明了动量空间中相应的边缘律现在由一个独特的painlev - ii积分-微分层次控制。我们的分析基于算子值Riemann-Hilbert技术,该技术为算子值painlev - ii ODE系统生成Lax对,该系统自然地编码了上述层次结构。作为副产品,我们建立了积分-微分painlev - ii层次与新的积分-微分mKdV层次的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Momenta spacing distributions in anharmonic oscillators and the higher order finite temperature Airy kernel
We rigorously compute the integrable system for the limiting $(N\rightarrow\infty)$ distribution function of the extreme momentum of $N$ noninteracting fermions when confined to an anharmonic trap $V(q)=q^{2n}$ for $n\in\mathbb{Z}_{\geq 1}$ at positive temperature. More precisely, the edge momentum statistics in the harmonic trap $n=1$ are known to obey the weak asymmetric KPZ crossover law which is realized via the finite temperature Airy kernel determinant or equivalently via a Painlev\'e-II integro-differential transcendent, cf. \cite{LW,ACQ}. For general $n\geq 2$, a novel higher order finite temperature Airy kernel has recently emerged in physics literature \cite{DMS} and we show that the corresponding edge law in momentum space is now governed by a distinguished Painlev\'e-II integro-differential hierarchy. Our analysis is based on operator-valued Riemann-Hilbert techniques which produce a Lax pair for an operator-valued Painlev\'e-II ODE system that naturally encodes the aforementioned hierarchy. As byproduct, we establish a connection of the integro-differential Painlev\'e-II hierarchy to a novel integro-differential mKdV hierarchy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
16
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信