Harshavardhan Sundar, Weiran Wang, Ming Sun, Chao Wang
{"title":"Raw Waveform Based End-to-end Deep Convolutional Network for Spatial Localization of Multiple Acoustic Sources","authors":"Harshavardhan Sundar, Weiran Wang, Ming Sun, Chao Wang","doi":"10.1109/ICASSP40776.2020.9054090","DOIUrl":null,"url":null,"abstract":"In this paper, we present an end-to-end deep convolutional neural network operating on multi-channel raw audio data to localize multiple simultaneously active acoustic sources in space. Previously reported deep learning based approaches work well in localizing a single source directly from multi-channel raw-audio, but are not easily extendable to localize multiple sources due to the well known permutation problem. We propose a novel encoding scheme to represent the spatial coordinates of multiple sources, which facilitates 2D localization of multiple sources in an end-to-end fashion, avoiding the permutation problem and achieving arbitrary spatial resolution. Experiments on a simulated data set and real recordings from the AV16.3 Corpus demonstrate that the proposed method generalizes well to unseen test conditions, and outperforms a recent time difference of arrival (TDOA) based multiple source localization approach reported in the literature.","PeriodicalId":13127,"journal":{"name":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"134 1","pages":"4642-4646"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP40776.2020.9054090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

在本文中,我们提出了一个端到端深度卷积神经网络操作多通道原始音频数据,以定位空间中多个同时活跃的声源。先前报道的基于深度学习的方法可以很好地从多声道原始音频中直接定位单个源,但由于众所周知的排列问题,不容易扩展到定位多个源。本文提出了一种新的多源空间坐标编码方案,实现了多源的端到端二维定位,避免了排列问题,实现了任意的空间分辨率。在AV16.3语料库的模拟数据集和真实记录上进行的实验表明,该方法可以很好地泛化到未知的测试条件下,并且优于最近文献报道的基于到达时差(TDOA)的多源定位方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Raw Waveform Based End-to-end Deep Convolutional Network for Spatial Localization of Multiple Acoustic Sources
In this paper, we present an end-to-end deep convolutional neural network operating on multi-channel raw audio data to localize multiple simultaneously active acoustic sources in space. Previously reported deep learning based approaches work well in localizing a single source directly from multi-channel raw-audio, but are not easily extendable to localize multiple sources due to the well known permutation problem. We propose a novel encoding scheme to represent the spatial coordinates of multiple sources, which facilitates 2D localization of multiple sources in an end-to-end fashion, avoiding the permutation problem and achieving arbitrary spatial resolution. Experiments on a simulated data set and real recordings from the AV16.3 Corpus demonstrate that the proposed method generalizes well to unseen test conditions, and outperforms a recent time difference of arrival (TDOA) based multiple source localization approach reported in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信