欧几里得坐标和黎曼坐标中的逆时偏移

César-Augusto Arias Chica, Luis-Fernando Duque-Gómez, Juan-Guillermo Paniagua-Castrillón
{"title":"欧几里得坐标和黎曼坐标中的逆时偏移","authors":"César-Augusto Arias Chica, Luis-Fernando Duque-Gómez, Juan-Guillermo Paniagua-Castrillón","doi":"10.29047/01225383.157","DOIUrl":null,"url":null,"abstract":"Reverse time migration in zones with rugged topography is a method that presents some challenging issues.  We present an analysis of reverse time migration in transformed domains, in particular for a technique that goes from an Euclidian to a Riemannian scenario, as suggested by some authors in previous literature. Computational results show that there is not significant improvement in the final image when the Riemannian approach is used as compared with images obtained with an Euclidean metric.","PeriodicalId":10745,"journal":{"name":"CT&F - Ciencia, Tecnología y Futuro","volume":"185 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reverse Time Migration in Euclidean and Riemannian coordinates\",\"authors\":\"César-Augusto Arias Chica, Luis-Fernando Duque-Gómez, Juan-Guillermo Paniagua-Castrillón\",\"doi\":\"10.29047/01225383.157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reverse time migration in zones with rugged topography is a method that presents some challenging issues.  We present an analysis of reverse time migration in transformed domains, in particular for a technique that goes from an Euclidian to a Riemannian scenario, as suggested by some authors in previous literature. Computational results show that there is not significant improvement in the final image when the Riemannian approach is used as compared with images obtained with an Euclidean metric.\",\"PeriodicalId\":10745,\"journal\":{\"name\":\"CT&F - Ciencia, Tecnología y Futuro\",\"volume\":\"185 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CT&F - Ciencia, Tecnología y Futuro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29047/01225383.157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CT&F - Ciencia, Tecnología y Futuro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29047/01225383.157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

地形起伏带的逆时偏移是一种具有挑战性的方法。我们提出了变换域的逆时偏移分析,特别是从欧几里得到黎曼场景的技术,正如一些作者在以前的文献中所建议的那样。计算结果表明,与欧几里得度量法得到的图像相比,采用黎曼方法得到的最终图像没有明显的改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reverse Time Migration in Euclidean and Riemannian coordinates
Reverse time migration in zones with rugged topography is a method that presents some challenging issues.  We present an analysis of reverse time migration in transformed domains, in particular for a technique that goes from an Euclidian to a Riemannian scenario, as suggested by some authors in previous literature. Computational results show that there is not significant improvement in the final image when the Riemannian approach is used as compared with images obtained with an Euclidean metric.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信