E. Gorman, Steven L. Bunkley, J. Ball, Anton Netchaev
{"title":"真实脉冲声信号共形阵的到达方向估计","authors":"E. Gorman, Steven L. Bunkley, J. Ball, Anton Netchaev","doi":"10.1121/2.0000702","DOIUrl":null,"url":null,"abstract":"Current methods for direction of arrival (DOA)estimation are disproportionately represented in the literature by microphone array geometry and sound source properties. A wide variety of implemented methods and publications are available for uniformly-spaced arrays such as uniform linear arrays (ULA), uniform circular arrays (UCA), and uniform rectangular arrays (URA). Further, implemented DOA estimators are specifically designed for narrowband, continuous signals. Methods applicable to wideband signals on arbitrarily-shaped arrays are limited; alternative approaches that partition the array into sub arrays expand the number of applicable methods. For a realistic military application of a single impulse localization on a conformal microphone array, methods must be able to estimate the DOA of wideband, static, acoustic sources. DOA estimator methods’ performances, capabilities, and limitations are explored on various real-world sound sources and configurations of a five-microphone conformal array.","PeriodicalId":20469,"journal":{"name":"Proc. Meet. Acoust.","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Direction of arrival estimation for conformal arrays on real-world impulsive acoustic signals\",\"authors\":\"E. Gorman, Steven L. Bunkley, J. Ball, Anton Netchaev\",\"doi\":\"10.1121/2.0000702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current methods for direction of arrival (DOA)estimation are disproportionately represented in the literature by microphone array geometry and sound source properties. A wide variety of implemented methods and publications are available for uniformly-spaced arrays such as uniform linear arrays (ULA), uniform circular arrays (UCA), and uniform rectangular arrays (URA). Further, implemented DOA estimators are specifically designed for narrowband, continuous signals. Methods applicable to wideband signals on arbitrarily-shaped arrays are limited; alternative approaches that partition the array into sub arrays expand the number of applicable methods. For a realistic military application of a single impulse localization on a conformal microphone array, methods must be able to estimate the DOA of wideband, static, acoustic sources. DOA estimator methods’ performances, capabilities, and limitations are explored on various real-world sound sources and configurations of a five-microphone conformal array.\",\"PeriodicalId\":20469,\"journal\":{\"name\":\"Proc. Meet. Acoust.\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proc. Meet. Acoust.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1121/2.0000702\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proc. Meet. Acoust.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1121/2.0000702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Direction of arrival estimation for conformal arrays on real-world impulsive acoustic signals
Current methods for direction of arrival (DOA)estimation are disproportionately represented in the literature by microphone array geometry and sound source properties. A wide variety of implemented methods and publications are available for uniformly-spaced arrays such as uniform linear arrays (ULA), uniform circular arrays (UCA), and uniform rectangular arrays (URA). Further, implemented DOA estimators are specifically designed for narrowband, continuous signals. Methods applicable to wideband signals on arbitrarily-shaped arrays are limited; alternative approaches that partition the array into sub arrays expand the number of applicable methods. For a realistic military application of a single impulse localization on a conformal microphone array, methods must be able to estimate the DOA of wideband, static, acoustic sources. DOA estimator methods’ performances, capabilities, and limitations are explored on various real-world sound sources and configurations of a five-microphone conformal array.