Rex:以多核速度复制

Zhenyu Guo, C. Hong, Mao Yang, Dong Zhou, Lidong Zhou, Li Zhuang
{"title":"Rex:以多核速度复制","authors":"Zhenyu Guo, C. Hong, Mao Yang, Dong Zhou, Lidong Zhou, Li Zhuang","doi":"10.1145/2592798.2592800","DOIUrl":null,"url":null,"abstract":"Standard state-machine replication involves consensus on a sequence of totally ordered requests through, for example, the Paxos protocol. Such a sequential execution model is becoming outdated on prevalent multi-core servers. Highly concurrent executions on multi-core architectures introduce non-determinism related to thread scheduling and lock contentions, and fundamentally break the assumption in state-machine replication. This tension between concurrency and consistency is not inherent because the total-ordering of requests is merely a simplifying convenience that is unnecessary for consistency. Concurrent executions of the application can be decoupled with a sequence of consensus decisions through consensus on partial-order traces, rather than on totally ordered requests, that capture the non-deterministic decisions in one replica execution and to be replayed with the same decisions on others. The result is a new multi-core friendly replicated state-machine framework that achieves strong consistency while preserving parallelism in multi-thread applications. On 12-core machines with hyper-threading, evaluations on typical applications show that we can scale with the number of cores, achieving up to 16 times the throughput of standard replicated state machines.","PeriodicalId":20737,"journal":{"name":"Proceedings of the Eleventh European Conference on Computer Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"72","resultStr":"{\"title\":\"Rex: replication at the speed of multi-core\",\"authors\":\"Zhenyu Guo, C. Hong, Mao Yang, Dong Zhou, Lidong Zhou, Li Zhuang\",\"doi\":\"10.1145/2592798.2592800\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Standard state-machine replication involves consensus on a sequence of totally ordered requests through, for example, the Paxos protocol. Such a sequential execution model is becoming outdated on prevalent multi-core servers. Highly concurrent executions on multi-core architectures introduce non-determinism related to thread scheduling and lock contentions, and fundamentally break the assumption in state-machine replication. This tension between concurrency and consistency is not inherent because the total-ordering of requests is merely a simplifying convenience that is unnecessary for consistency. Concurrent executions of the application can be decoupled with a sequence of consensus decisions through consensus on partial-order traces, rather than on totally ordered requests, that capture the non-deterministic decisions in one replica execution and to be replayed with the same decisions on others. The result is a new multi-core friendly replicated state-machine framework that achieves strong consistency while preserving parallelism in multi-thread applications. On 12-core machines with hyper-threading, evaluations on typical applications show that we can scale with the number of cores, achieving up to 16 times the throughput of standard replicated state machines.\",\"PeriodicalId\":20737,\"journal\":{\"name\":\"Proceedings of the Eleventh European Conference on Computer Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"72\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Eleventh European Conference on Computer Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2592798.2592800\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eleventh European Conference on Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2592798.2592800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 72

摘要

标准状态机复制涉及通过Paxos协议对一系列完全有序的请求达成一致。这种顺序执行模型在流行的多核服务器上已经过时了。多核架构上的高并发执行引入了与线程调度和锁争用相关的非确定性,并从根本上打破了状态机复制中的假设。并发性和一致性之间的紧张关系并不是固有的,因为请求的总排序仅仅是一种简化的便利,对于一致性来说是不必要的。应用程序的并发执行可以通过部分顺序的一致性跟踪(而不是完全顺序的请求)与一系列一致决策解耦,这些一致决策捕获了一个副本执行中的不确定性决策,并在其他副本执行中使用相同的决策重播。结果是一个新的多核友好的复制状态机框架,在保持多线程应用程序并行性的同时实现了强一致性。在具有超线程的12核机器上,对典型应用程序的评估表明,我们可以随着核心数量的增加而扩展,达到标准复制状态机吞吐量的16倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rex: replication at the speed of multi-core
Standard state-machine replication involves consensus on a sequence of totally ordered requests through, for example, the Paxos protocol. Such a sequential execution model is becoming outdated on prevalent multi-core servers. Highly concurrent executions on multi-core architectures introduce non-determinism related to thread scheduling and lock contentions, and fundamentally break the assumption in state-machine replication. This tension between concurrency and consistency is not inherent because the total-ordering of requests is merely a simplifying convenience that is unnecessary for consistency. Concurrent executions of the application can be decoupled with a sequence of consensus decisions through consensus on partial-order traces, rather than on totally ordered requests, that capture the non-deterministic decisions in one replica execution and to be replayed with the same decisions on others. The result is a new multi-core friendly replicated state-machine framework that achieves strong consistency while preserving parallelism in multi-thread applications. On 12-core machines with hyper-threading, evaluations on typical applications show that we can scale with the number of cores, achieving up to 16 times the throughput of standard replicated state machines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信