光刻、等离子体化学清洗和磁控管沉积过程中金刚石表面的修饰

A. Golovanov, Nicolay V. Luparev, B. Sorokin
{"title":"光刻、等离子体化学清洗和磁控管沉积过程中金刚石表面的修饰","authors":"A. Golovanov, Nicolay V. Luparev, B. Sorokin","doi":"10.6060/ivkkt.20206311.6232","DOIUrl":null,"url":null,"abstract":"An influence of the conventional planar technology of the semiconductor surface treatment operations (photolithography, plasma-chemical surface cleaning in radio frequency low-pressure oxygen discharge, and thin metal films growth) on monocrystalline diamond surface topography and roughness is investigated. It is preliminary shown that photolithography without the plasma cleaning and magnetron deposition of an aluminum film do not induce any diamond surface changes which could be found by the optical profilometry, electron and optical microscopy. However, as a result of the lithography some organic contaminants can decrease the adhesion of the aluminum film and have to remove from the surface. Further, the influence of the above-listed surface treatment operations separately and in combinations on the synthetic diamond surface is investigated. It is found that an even short oxygen plasma cleaning during 5 min with a low bias power of 20 W leads to etching the grooves on the diamond surface The depth of the etching grooves varies by more than an order of magnitude in different experiments (0.3 - 19 nm), and by 10-20% within the same substrate under the influence of the poorly controlled external factors. Also, oxygen plasma treatment changes its secondary electron emission coefficient. Deposition of aluminum film after plasma cleaning does not induce noticeable changes in the diamond surface topography. The quality of diamond surface polishing (in “hard” of “soft” direction), the diamond’s type (IIa or IIb) as well as producing method (HPHT or homoepitaxial CVD) do not affect the result of grooves formation.","PeriodicalId":14640,"journal":{"name":"IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII KHIMIYA KHIMICHESKAYA TEKHNOLOGIYA","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"MODIFICATION OF DIAMOND SURFACE DURING PHOTOLITHOGRAPHY, PLASMA-CHEMICAL CLEANING, AND MAGNETRON DEPOSITION\",\"authors\":\"A. Golovanov, Nicolay V. Luparev, B. Sorokin\",\"doi\":\"10.6060/ivkkt.20206311.6232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An influence of the conventional planar technology of the semiconductor surface treatment operations (photolithography, plasma-chemical surface cleaning in radio frequency low-pressure oxygen discharge, and thin metal films growth) on monocrystalline diamond surface topography and roughness is investigated. It is preliminary shown that photolithography without the plasma cleaning and magnetron deposition of an aluminum film do not induce any diamond surface changes which could be found by the optical profilometry, electron and optical microscopy. However, as a result of the lithography some organic contaminants can decrease the adhesion of the aluminum film and have to remove from the surface. Further, the influence of the above-listed surface treatment operations separately and in combinations on the synthetic diamond surface is investigated. It is found that an even short oxygen plasma cleaning during 5 min with a low bias power of 20 W leads to etching the grooves on the diamond surface The depth of the etching grooves varies by more than an order of magnitude in different experiments (0.3 - 19 nm), and by 10-20% within the same substrate under the influence of the poorly controlled external factors. Also, oxygen plasma treatment changes its secondary electron emission coefficient. Deposition of aluminum film after plasma cleaning does not induce noticeable changes in the diamond surface topography. The quality of diamond surface polishing (in “hard” of “soft” direction), the diamond’s type (IIa or IIb) as well as producing method (HPHT or homoepitaxial CVD) do not affect the result of grooves formation.\",\"PeriodicalId\":14640,\"journal\":{\"name\":\"IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII KHIMIYA KHIMICHESKAYA TEKHNOLOGIYA\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII KHIMIYA KHIMICHESKAYA TEKHNOLOGIYA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6060/ivkkt.20206311.6232\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII KHIMIYA KHIMICHESKAYA TEKHNOLOGIYA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6060/ivkkt.20206311.6232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究了传统的半导体表面处理工艺(光刻、射频低压氧放电等离子体化学表面清洗和金属薄膜生长)对单晶金刚石表面形貌和粗糙度的影响。初步表明,光刻不经等离子体清洗和磁控管沉积铝膜不会引起金刚石表面的任何变化,这些变化可以通过光学轮廓学、电子显微镜和光学显微镜观察到。然而,由于光刻的结果,一些有机污染物会降低铝膜的附着力,必须从表面去除。进一步,研究了上述表面处理操作单独和组合对合成金刚石表面的影响。研究发现,在低偏置功率为20 W的条件下,即使在5 min内进行短时间的氧等离子体清洗,也可以在金刚石表面蚀刻出凹槽。在不同的实验中,蚀刻凹槽的深度变化超过一个数量级(0.3 ~ 19 nm),在同一衬底内,在控制不佳的外部因素的影响下,蚀刻凹槽的深度变化为10 ~ 20%。此外,氧等离子体处理改变了其二次电子发射系数。等离子清洗后铝膜的沉积不会引起金刚石表面形貌的明显变化。金刚石表面抛光的质量(“硬”或“软”方向),金刚石的类型(IIa或IIb)以及生产方法(HPHT或同外延CVD)不影响沟槽形成的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MODIFICATION OF DIAMOND SURFACE DURING PHOTOLITHOGRAPHY, PLASMA-CHEMICAL CLEANING, AND MAGNETRON DEPOSITION
An influence of the conventional planar technology of the semiconductor surface treatment operations (photolithography, plasma-chemical surface cleaning in radio frequency low-pressure oxygen discharge, and thin metal films growth) on monocrystalline diamond surface topography and roughness is investigated. It is preliminary shown that photolithography without the plasma cleaning and magnetron deposition of an aluminum film do not induce any diamond surface changes which could be found by the optical profilometry, electron and optical microscopy. However, as a result of the lithography some organic contaminants can decrease the adhesion of the aluminum film and have to remove from the surface. Further, the influence of the above-listed surface treatment operations separately and in combinations on the synthetic diamond surface is investigated. It is found that an even short oxygen plasma cleaning during 5 min with a low bias power of 20 W leads to etching the grooves on the diamond surface The depth of the etching grooves varies by more than an order of magnitude in different experiments (0.3 - 19 nm), and by 10-20% within the same substrate under the influence of the poorly controlled external factors. Also, oxygen plasma treatment changes its secondary electron emission coefficient. Deposition of aluminum film after plasma cleaning does not induce noticeable changes in the diamond surface topography. The quality of diamond surface polishing (in “hard” of “soft” direction), the diamond’s type (IIa or IIb) as well as producing method (HPHT or homoepitaxial CVD) do not affect the result of grooves formation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信