Lan Wang, Ping Li, Ting Lu, Tianhong Zhang, Wu Xiang Bai
{"title":"非常规储层纳米流体控水效果评价——实验室实验研究","authors":"Lan Wang, Ping Li, Ting Lu, Tianhong Zhang, Wu Xiang Bai","doi":"10.2118/208820-ms","DOIUrl":null,"url":null,"abstract":"\n The development of unconventional oil and gas reservoirs has become the focus of oil industry in the world, and the study of fluid flow law in unconventional reservoirs has gradually become important. As a popular additive, the analysis of the influence of nanoparticles on the fluid distribution and flow in the reservoir will have significant effect on the development strategy of the reservoir. In this paper, the effect of nanoparticle adsorption on core wettability is theoretically analyzed. The effect of hydrophilic TiO2 nanofluid on the distribution of fluid in the core was analyzed by using a typical low-permeability dense sandstone core. Through the combination of centrifugal experiment and nuclear magnetic resonance experiment, the distribution characteristics of fluid in the core before and after nanofluid treatment are compared, the nuclear magnetic resonance T2 spectrum after centrifugation is processed, and the T2 cut-off value is calibrated. The experimental results show that the mobility of internal fluid is stronger in the process of increasing centrifugal force. Compared with deionized water, the nanofluid in the small pores is easier to discharge. Based on this result, the proper use of nano additives in the production process can effectively control the fluid flow in the reservoir.","PeriodicalId":10891,"journal":{"name":"Day 2 Thu, February 24, 2022","volume":"363 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of Water Control Effect of Nanofluids on Unconventional Reservoirs – Laboratory Experimental Study\",\"authors\":\"Lan Wang, Ping Li, Ting Lu, Tianhong Zhang, Wu Xiang Bai\",\"doi\":\"10.2118/208820-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The development of unconventional oil and gas reservoirs has become the focus of oil industry in the world, and the study of fluid flow law in unconventional reservoirs has gradually become important. As a popular additive, the analysis of the influence of nanoparticles on the fluid distribution and flow in the reservoir will have significant effect on the development strategy of the reservoir. In this paper, the effect of nanoparticle adsorption on core wettability is theoretically analyzed. The effect of hydrophilic TiO2 nanofluid on the distribution of fluid in the core was analyzed by using a typical low-permeability dense sandstone core. Through the combination of centrifugal experiment and nuclear magnetic resonance experiment, the distribution characteristics of fluid in the core before and after nanofluid treatment are compared, the nuclear magnetic resonance T2 spectrum after centrifugation is processed, and the T2 cut-off value is calibrated. The experimental results show that the mobility of internal fluid is stronger in the process of increasing centrifugal force. Compared with deionized water, the nanofluid in the small pores is easier to discharge. Based on this result, the proper use of nano additives in the production process can effectively control the fluid flow in the reservoir.\",\"PeriodicalId\":10891,\"journal\":{\"name\":\"Day 2 Thu, February 24, 2022\",\"volume\":\"363 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Thu, February 24, 2022\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/208820-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Thu, February 24, 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/208820-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Evaluation of Water Control Effect of Nanofluids on Unconventional Reservoirs – Laboratory Experimental Study
The development of unconventional oil and gas reservoirs has become the focus of oil industry in the world, and the study of fluid flow law in unconventional reservoirs has gradually become important. As a popular additive, the analysis of the influence of nanoparticles on the fluid distribution and flow in the reservoir will have significant effect on the development strategy of the reservoir. In this paper, the effect of nanoparticle adsorption on core wettability is theoretically analyzed. The effect of hydrophilic TiO2 nanofluid on the distribution of fluid in the core was analyzed by using a typical low-permeability dense sandstone core. Through the combination of centrifugal experiment and nuclear magnetic resonance experiment, the distribution characteristics of fluid in the core before and after nanofluid treatment are compared, the nuclear magnetic resonance T2 spectrum after centrifugation is processed, and the T2 cut-off value is calibrated. The experimental results show that the mobility of internal fluid is stronger in the process of increasing centrifugal force. Compared with deionized water, the nanofluid in the small pores is easier to discharge. Based on this result, the proper use of nano additives in the production process can effectively control the fluid flow in the reservoir.