由费马商导出周期$ p^2 $二元序列$ 3 $和$ 4 $阶的相关测度

IF 0.7 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Huaning Liu, Xi Liu
{"title":"由费马商导出周期$ p^2 $二元序列$ 3 $和$ 4 $阶的相关测度","authors":"Huaning Liu, Xi Liu","doi":"10.3934/AMC.2021008","DOIUrl":null,"url":null,"abstract":"Let \\begin{document}$ p $\\end{document} be a prime and let \\begin{document}$ n $\\end{document} be an integer with \\begin{document}$ (n, p) = 1 $\\end{document} . The Fermat quotient \\begin{document}$ q_p(n) $\\end{document} is defined as \\begin{document}$ q_p(n)\\equiv \\frac{n^{p-1}-1}{p} \\ (\\bmod\\ p), \\quad 0\\leq q_p(n)\\leq p-1. $\\end{document} We also define \\begin{document}$ q_p(kp) = 0 $\\end{document} for \\begin{document}$ k\\in \\mathbb{Z} $\\end{document} . Chen, Ostafe and Winterhof constructed the binary sequence \\begin{document}$ E_{p^2} = \\left(e_0, e_1, \\cdots, e_{p^2-1}\\right)\\in \\{0, 1\\}^{p^2} $\\end{document} as \\begin{document}$ \\begin{equation*} \\begin{split} e_{n} = \\left\\{\\begin{array}{ll} 0, & \\hbox{if }\\ 0\\leq \\frac{q_p(n)}{p} and studied the well-distribution measure and correlation measure of order \\begin{document}$ 2 $\\end{document} by using estimates for exponential sums of Fermat quotients. In this paper we further study the correlation measures of the sequence. Our results show that the correlation measure of order \\begin{document}$ 3 $\\end{document} is quite good, but the \\begin{document}$ 4 $\\end{document} -order correlation measure of the sequence is very large.","PeriodicalId":50859,"journal":{"name":"Advances in Mathematics of Communications","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the correlation measures of orders $ 3 $ and $ 4 $ of binary sequence of period $ p^2 $ derived from Fermat quotients\",\"authors\":\"Huaning Liu, Xi Liu\",\"doi\":\"10.3934/AMC.2021008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let \\\\begin{document}$ p $\\\\end{document} be a prime and let \\\\begin{document}$ n $\\\\end{document} be an integer with \\\\begin{document}$ (n, p) = 1 $\\\\end{document} . The Fermat quotient \\\\begin{document}$ q_p(n) $\\\\end{document} is defined as \\\\begin{document}$ q_p(n)\\\\equiv \\\\frac{n^{p-1}-1}{p} \\\\ (\\\\bmod\\\\ p), \\\\quad 0\\\\leq q_p(n)\\\\leq p-1. $\\\\end{document} We also define \\\\begin{document}$ q_p(kp) = 0 $\\\\end{document} for \\\\begin{document}$ k\\\\in \\\\mathbb{Z} $\\\\end{document} . Chen, Ostafe and Winterhof constructed the binary sequence \\\\begin{document}$ E_{p^2} = \\\\left(e_0, e_1, \\\\cdots, e_{p^2-1}\\\\right)\\\\in \\\\{0, 1\\\\}^{p^2} $\\\\end{document} as \\\\begin{document}$ \\\\begin{equation*} \\\\begin{split} e_{n} = \\\\left\\\\{\\\\begin{array}{ll} 0, & \\\\hbox{if }\\\\ 0\\\\leq \\\\frac{q_p(n)}{p} and studied the well-distribution measure and correlation measure of order \\\\begin{document}$ 2 $\\\\end{document} by using estimates for exponential sums of Fermat quotients. In this paper we further study the correlation measures of the sequence. Our results show that the correlation measure of order \\\\begin{document}$ 3 $\\\\end{document} is quite good, but the \\\\begin{document}$ 4 $\\\\end{document} -order correlation measure of the sequence is very large.\",\"PeriodicalId\":50859,\"journal\":{\"name\":\"Advances in Mathematics of Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics of Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3934/AMC.2021008\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics of Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3934/AMC.2021008","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 1

摘要

设\begin{document}$ p $\end{document}为素数,设\begin{document}$ n $\end{document}为整数,其中\begin{document}$ (n, p) = 1 $\end{document}。费马商\begin{document}$ q_p(n) $\end{document}定义为\begin{document}$ q_p(n)\equiv \frac{n^{p-1}-1}{p} \ (\bmod\ p), \quad 0\leq q_p(n)\leq p-1。$\end{document}我们也定义\begin{document}$ q_p(kp) = 0 $\end{document} for \begin{document}$ k\in \mathbb{Z} $\end{document}。Chen、Ostafe和Winterhof构造了二元序列\begin{document}$ E_{p^2} = \left(e_0, e_1, \cdots, E_{p^2} \right)\in \{0,1 \}^{p^2} $\end{document}为\begin{document}$ \begin{equation*} \begin{split} E_{n} = \left\ \begin{array}{ll} 0, & \hbox{if}\ 0\leq \frac{q_p(n)}{p},并利用费马商的指数和估计研究了阶\begin{document}$ 2 $\end{document}的良好分布测度和相关测度。本文进一步研究了序列的相关测度。结果表明,序列\begin{document}$ 3 $\end{document}的相关测度相当好,而序列\begin{document}$ 4 $\end{document}的相关测度非常大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the correlation measures of orders $ 3 $ and $ 4 $ of binary sequence of period $ p^2 $ derived from Fermat quotients
Let \begin{document}$ p $\end{document} be a prime and let \begin{document}$ n $\end{document} be an integer with \begin{document}$ (n, p) = 1 $\end{document} . The Fermat quotient \begin{document}$ q_p(n) $\end{document} is defined as \begin{document}$ q_p(n)\equiv \frac{n^{p-1}-1}{p} \ (\bmod\ p), \quad 0\leq q_p(n)\leq p-1. $\end{document} We also define \begin{document}$ q_p(kp) = 0 $\end{document} for \begin{document}$ k\in \mathbb{Z} $\end{document} . Chen, Ostafe and Winterhof constructed the binary sequence \begin{document}$ E_{p^2} = \left(e_0, e_1, \cdots, e_{p^2-1}\right)\in \{0, 1\}^{p^2} $\end{document} as \begin{document}$ \begin{equation*} \begin{split} e_{n} = \left\{\begin{array}{ll} 0, & \hbox{if }\ 0\leq \frac{q_p(n)}{p} and studied the well-distribution measure and correlation measure of order \begin{document}$ 2 $\end{document} by using estimates for exponential sums of Fermat quotients. In this paper we further study the correlation measures of the sequence. Our results show that the correlation measure of order \begin{document}$ 3 $\end{document} is quite good, but the \begin{document}$ 4 $\end{document} -order correlation measure of the sequence is very large.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematics of Communications
Advances in Mathematics of Communications 工程技术-计算机:理论方法
CiteScore
2.20
自引率
22.20%
发文量
78
审稿时长
>12 weeks
期刊介绍: Advances in Mathematics of Communications (AMC) publishes original research papers of the highest quality in all areas of mathematics and computer science which are relevant to applications in communications technology. For this reason, submissions from many areas of mathematics are invited, provided these show a high level of originality, new techniques, an innovative approach, novel methodologies, or otherwise a high level of depth and sophistication. Any work that does not conform to these standards will be rejected. Areas covered include coding theory, cryptology, combinatorics, finite geometry, algebra and number theory, but are not restricted to these. This journal also aims to cover the algorithmic and computational aspects of these disciplines. Hence, all mathematics and computer science contributions of appropriate depth and relevance to the above mentioned applications in communications technology are welcome. More detailed indication of the journal''s scope is given by the subject interests of the members of the board of editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信