{"title":"多个地图的Nielsen和Reidemeister符合数的计算","authors":"Tha'is F. M. Monis, P. Wong","doi":"10.12775/tmna.2020.002","DOIUrl":null,"url":null,"abstract":"Let $f_1,...,f_k:M\\to N$ be maps between closed manifolds, $N(f_1,...,f_k)$ and $R(f_1,...,f_k)$ be the Nielsen and the Reideimeister coincidence numbers respectively. In this note, we relate $R(f_1,...,f_k)$ with $R(f_1,f_2),...,R(f_1,f_k)$. When $N$ is a torus or a nilmanifold, we compute $R(f_1,...,f_k)$ which, in these cases, is equal to $N(f_1,...,f_k)$.","PeriodicalId":8433,"journal":{"name":"arXiv: Algebraic Topology","volume":"359 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computation of Nielsen and Reidemeister coincidence numbers for multiple maps\",\"authors\":\"Tha'is F. M. Monis, P. Wong\",\"doi\":\"10.12775/tmna.2020.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $f_1,...,f_k:M\\\\to N$ be maps between closed manifolds, $N(f_1,...,f_k)$ and $R(f_1,...,f_k)$ be the Nielsen and the Reideimeister coincidence numbers respectively. In this note, we relate $R(f_1,...,f_k)$ with $R(f_1,f_2),...,R(f_1,f_k)$. When $N$ is a torus or a nilmanifold, we compute $R(f_1,...,f_k)$ which, in these cases, is equal to $N(f_1,...,f_k)$.\",\"PeriodicalId\":8433,\"journal\":{\"name\":\"arXiv: Algebraic Topology\",\"volume\":\"359 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12775/tmna.2020.002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12775/tmna.2020.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
让$ f,…,f_k:M\到N$是闭流形之间的映射,$N(f_1,…,f_k)$和$R(f_1,…,f_k)$分别是Nielsen和Reideimeister符合数。在这个报告中,我们与$ R (f,…,f_k) $ $ R (f, f₂)…,R (f, f_k) $。当$N$是环面或零流形时,我们计算$R(f_1,…,f_k)$,在这种情况下,它等于$N(f_1,…,f_k)$。
Computation of Nielsen and Reidemeister coincidence numbers for multiple maps
Let $f_1,...,f_k:M\to N$ be maps between closed manifolds, $N(f_1,...,f_k)$ and $R(f_1,...,f_k)$ be the Nielsen and the Reideimeister coincidence numbers respectively. In this note, we relate $R(f_1,...,f_k)$ with $R(f_1,f_2),...,R(f_1,f_k)$. When $N$ is a torus or a nilmanifold, we compute $R(f_1,...,f_k)$ which, in these cases, is equal to $N(f_1,...,f_k)$.