基于层次推理参数的时空关联规则强挖掘算法

Zhang Xuewu
{"title":"基于层次推理参数的时空关联规则强挖掘算法","authors":"Zhang Xuewu","doi":"10.14257/ijdta.2017.10.1.06","DOIUrl":null,"url":null,"abstract":"Such problems as premature convergence and local optimal solution universally exist in the application of traditional genetic algorithm to the association rules mining, so a lot of time is needed for extracting the useful strong association rules. In order to conquer these disadvantages, the adaptive variation rate is introduced in this paper and the method for the operator selection during the genetic process is improved in order to specifically improve the traditional genetic algorithm, and the improved association rules mining method is used to analyze the power transformation equipment defect data. The example comparison shows that the improved genetic algorithm can significantly reduce the rule discovery calculation complexity and improve the association rules mining efficiency.","PeriodicalId":13926,"journal":{"name":"International journal of database theory and application","volume":"359 1","pages":"57-66"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temporal and Spatial Association Rules Strong Mining Algorithm Based on Hierarchical Reasoning Parameters\",\"authors\":\"Zhang Xuewu\",\"doi\":\"10.14257/ijdta.2017.10.1.06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Such problems as premature convergence and local optimal solution universally exist in the application of traditional genetic algorithm to the association rules mining, so a lot of time is needed for extracting the useful strong association rules. In order to conquer these disadvantages, the adaptive variation rate is introduced in this paper and the method for the operator selection during the genetic process is improved in order to specifically improve the traditional genetic algorithm, and the improved association rules mining method is used to analyze the power transformation equipment defect data. The example comparison shows that the improved genetic algorithm can significantly reduce the rule discovery calculation complexity and improve the association rules mining efficiency.\",\"PeriodicalId\":13926,\"journal\":{\"name\":\"International journal of database theory and application\",\"volume\":\"359 1\",\"pages\":\"57-66\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of database theory and application\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14257/ijdta.2017.10.1.06\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of database theory and application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14257/ijdta.2017.10.1.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

传统遗传算法在关联规则挖掘中的应用普遍存在过早收敛和局部最优解等问题,因此需要花费大量时间来提取有用的强关联规则。为了克服这些缺点,本文引入了自适应变异率,并对遗传过程中的算子选择方法进行了改进,对传统遗传算法进行了针对性的改进,并采用改进的关联规则挖掘方法对变电设备缺陷数据进行了分析。实例对比表明,改进的遗传算法可以显著降低规则发现的计算复杂度,提高关联规则挖掘效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Temporal and Spatial Association Rules Strong Mining Algorithm Based on Hierarchical Reasoning Parameters
Such problems as premature convergence and local optimal solution universally exist in the application of traditional genetic algorithm to the association rules mining, so a lot of time is needed for extracting the useful strong association rules. In order to conquer these disadvantages, the adaptive variation rate is introduced in this paper and the method for the operator selection during the genetic process is improved in order to specifically improve the traditional genetic algorithm, and the improved association rules mining method is used to analyze the power transformation equipment defect data. The example comparison shows that the improved genetic algorithm can significantly reduce the rule discovery calculation complexity and improve the association rules mining efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信