数域上某些代数环面上的显式Tamagawa数

Thomas Rüd
{"title":"数域上某些代数环面上的显式Tamagawa数","authors":"Thomas Rüd","doi":"10.1090/mcom/3771","DOIUrl":null,"url":null,"abstract":"Given a number field extension $K/k$ with an intermediate field $K^+$ fixed by a central element of the corresponding Galois group of prime order $p$, we build an algebraic torus over $k$ whose rational points are elements of $K^\\times$ sent to $k^\\times$ via the norm map $N_{K/K^+}$. The goal is to compute the Tamagawa number of that torus explicitly via Ono's formula that expresses it as a ratio of cohomological invariants. A fairly complete and detailed description of the cohomology of the character lattice of such a torus is given when $K/k$ is Galois. Partial results including the numerator are given when the extension is not Galois, or more generally when the torus is defined by an etale algebra. \nWe also present tools developed in SAGE for this purpose, allowing us to build and compute the cohomology and explore the local-global principles for such an algebraic torus. \nParticular attention is given to the case when $[K:K^+]=2$ and $K$ is a CM-field. This case corresponds to tori in $\\mathrm{GSp}_{2n}$, and most examples will be in that setting. This is motivated by the application to abelian varieties over finite fields and the Hasse principle for bilinear forms.","PeriodicalId":18301,"journal":{"name":"Math. Comput. Model.","volume":"23 1","pages":"2867-2904"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Explicit Tamagawa numbers for certain algebraic tori over number fields\",\"authors\":\"Thomas Rüd\",\"doi\":\"10.1090/mcom/3771\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a number field extension $K/k$ with an intermediate field $K^+$ fixed by a central element of the corresponding Galois group of prime order $p$, we build an algebraic torus over $k$ whose rational points are elements of $K^\\\\times$ sent to $k^\\\\times$ via the norm map $N_{K/K^+}$. The goal is to compute the Tamagawa number of that torus explicitly via Ono's formula that expresses it as a ratio of cohomological invariants. A fairly complete and detailed description of the cohomology of the character lattice of such a torus is given when $K/k$ is Galois. Partial results including the numerator are given when the extension is not Galois, or more generally when the torus is defined by an etale algebra. \\nWe also present tools developed in SAGE for this purpose, allowing us to build and compute the cohomology and explore the local-global principles for such an algebraic torus. \\nParticular attention is given to the case when $[K:K^+]=2$ and $K$ is a CM-field. This case corresponds to tori in $\\\\mathrm{GSp}_{2n}$, and most examples will be in that setting. This is motivated by the application to abelian varieties over finite fields and the Hasse principle for bilinear forms.\",\"PeriodicalId\":18301,\"journal\":{\"name\":\"Math. Comput. Model.\",\"volume\":\"23 1\",\"pages\":\"2867-2904\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Math. Comput. Model.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3771\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Math. Comput. Model.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

给定一个数字域扩展$K/ K $,中间域$K^+$由相应的素数阶伽罗瓦群$p$的中心元素固定,我们在$K $上构造一个代数环面,其有理点是$K^\乘以$的元素,通过范数映射$N_{K/K^+}$传递到$K^\乘以$。我们的目标是通过Ono的公式明确地计算出环面的Tamagawa数,该公式将其表示为上同调不变量的比率。当K/ K为伽罗瓦时,给出了这种环面特征格的上同性的较为完整和详细的描述。当扩展不是伽罗瓦时,或者更一般地说,当环面由一个代数定义时,给出包含分子的部分结果。我们还介绍了SAGE为此目的开发的工具,使我们能够构建和计算上同调,并探索这种代数环面的局部-全局原理。特别注意$[K:K^+]=2$和$K$是cm域的情况。这种情况对应于$\ mathm {GSp}_{2n}$中的tori,大多数示例将在该设置中。这是由有限域上的阿贝尔变分和双线性形式的哈塞原理的应用所激发的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Explicit Tamagawa numbers for certain algebraic tori over number fields
Given a number field extension $K/k$ with an intermediate field $K^+$ fixed by a central element of the corresponding Galois group of prime order $p$, we build an algebraic torus over $k$ whose rational points are elements of $K^\times$ sent to $k^\times$ via the norm map $N_{K/K^+}$. The goal is to compute the Tamagawa number of that torus explicitly via Ono's formula that expresses it as a ratio of cohomological invariants. A fairly complete and detailed description of the cohomology of the character lattice of such a torus is given when $K/k$ is Galois. Partial results including the numerator are given when the extension is not Galois, or more generally when the torus is defined by an etale algebra. We also present tools developed in SAGE for this purpose, allowing us to build and compute the cohomology and explore the local-global principles for such an algebraic torus. Particular attention is given to the case when $[K:K^+]=2$ and $K$ is a CM-field. This case corresponds to tori in $\mathrm{GSp}_{2n}$, and most examples will be in that setting. This is motivated by the application to abelian varieties over finite fields and the Hasse principle for bilinear forms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信