{"title":"有效自由费米子形状因子和XY自旋链","authors":"O. Gamayun, N. Iorgov, Y. Zhuravlev","doi":"10.21468/SCIPOSTPHYS.10.3.070","DOIUrl":null,"url":null,"abstract":"We introduce effective form factors for one-dimensional lattice fermions with arbitrary phase shifts. We study tau functions defined as series of these form factors. On the one hand we perform the exact summation and present tau functions as Fredholm determinants in the thermodynamic limit. On the other hand simple expressions of form factors allow us to present the corresponding series as integrals of elementary functions. Using this approach we re-derive the asymptotics of static correlation functions of the XY quantum chain at finite temperature.","PeriodicalId":8473,"journal":{"name":"arXiv: Statistical Mechanics","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Effective free-fermionic form factors and the XY spin chain\",\"authors\":\"O. Gamayun, N. Iorgov, Y. Zhuravlev\",\"doi\":\"10.21468/SCIPOSTPHYS.10.3.070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce effective form factors for one-dimensional lattice fermions with arbitrary phase shifts. We study tau functions defined as series of these form factors. On the one hand we perform the exact summation and present tau functions as Fredholm determinants in the thermodynamic limit. On the other hand simple expressions of form factors allow us to present the corresponding series as integrals of elementary functions. Using this approach we re-derive the asymptotics of static correlation functions of the XY quantum chain at finite temperature.\",\"PeriodicalId\":8473,\"journal\":{\"name\":\"arXiv: Statistical Mechanics\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Statistical Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21468/SCIPOSTPHYS.10.3.070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Statistical Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21468/SCIPOSTPHYS.10.3.070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effective free-fermionic form factors and the XY spin chain
We introduce effective form factors for one-dimensional lattice fermions with arbitrary phase shifts. We study tau functions defined as series of these form factors. On the one hand we perform the exact summation and present tau functions as Fredholm determinants in the thermodynamic limit. On the other hand simple expressions of form factors allow us to present the corresponding series as integrals of elementary functions. Using this approach we re-derive the asymptotics of static correlation functions of the XY quantum chain at finite temperature.