{"title":"含Dirac杂质的弱阻尼三次非线性Schrödinger的Galerkin方法,以及半线上的人工边界条件","authors":"A. Chrifi, M. Abounouh, H. A. Moatassime","doi":"10.3934/DCDSS.2021030","DOIUrl":null,"url":null,"abstract":"We consider a weakly damped cubic nonlinear Schrodinger equation with Dirac interaction defect in a half line of \\begin{document}$ \\mathbb{R} $\\end{document} . Endowed with artificial boundary condition at the point \\begin{document}$ x = 0 $\\end{document} , we discuss the global existence and uniqueness of solution of this equation by using Faedo–Galerkin method.","PeriodicalId":11254,"journal":{"name":"Discrete & Continuous Dynamical Systems - S","volume":"182 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Galerkin method of weakly damped cubic nonlinear Schrödinger with Dirac impurity, and artificial boundary condition in a half-line\",\"authors\":\"A. Chrifi, M. Abounouh, H. A. Moatassime\",\"doi\":\"10.3934/DCDSS.2021030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a weakly damped cubic nonlinear Schrodinger equation with Dirac interaction defect in a half line of \\\\begin{document}$ \\\\mathbb{R} $\\\\end{document} . Endowed with artificial boundary condition at the point \\\\begin{document}$ x = 0 $\\\\end{document} , we discuss the global existence and uniqueness of solution of this equation by using Faedo–Galerkin method.\",\"PeriodicalId\":11254,\"journal\":{\"name\":\"Discrete & Continuous Dynamical Systems - S\",\"volume\":\"182 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete & Continuous Dynamical Systems - S\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/DCDSS.2021030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Continuous Dynamical Systems - S","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/DCDSS.2021030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
摘要
We consider a weakly damped cubic nonlinear Schrodinger equation with Dirac interaction defect in a half line of \begin{document}$ \mathbb{R} $\end{document} . Endowed with artificial boundary condition at the point \begin{document}$ x = 0 $\end{document} , we discuss the global existence and uniqueness of solution of this equation by using Faedo–Galerkin method.
Galerkin method of weakly damped cubic nonlinear Schrödinger with Dirac impurity, and artificial boundary condition in a half-line
We consider a weakly damped cubic nonlinear Schrodinger equation with Dirac interaction defect in a half line of \begin{document}$ \mathbb{R} $\end{document} . Endowed with artificial boundary condition at the point \begin{document}$ x = 0 $\end{document} , we discuss the global existence and uniqueness of solution of this equation by using Faedo–Galerkin method.