D. Robbins, Clarence E. Johnson, R. Schafer, T. Way
{"title":"土壤-金属滑动阻力模型","authors":"D. Robbins, Clarence E. Johnson, R. Schafer, T. Way","doi":"10.13031/TRANS.13978","DOIUrl":null,"url":null,"abstract":"HighlightsA model was developed to express soil-metal sliding resistance in terms of normal stress and sliding path length.Soil-metal sliding resistance data, different from those used to develop the model, were acceptably simulated.The model is expected to be useful in the design and development of soil-engaging equipment.Abstract. Most previous soil-material sliding resistance studies have focused on the measurement and formulation of only qualitative relationships between sliding resistance and the material type, applied normal stress, sliding path length, and/or soil-properties. Few studies have attempted to formulate quantitative mathematical relationships between soil-material sliding resistance and these factors, or to mathematically express the relative contributions of the frictional and adhesive components to the total sliding resistance. In this study, a mathematical model was developed to express the components of soil-metal sliding resistance for a clay soil as functions of applied normal stress and sliding path length. The model is restricted to soil containing enough moisture to exhibit cohesive strength, but not so much moisture to exhibit gross plastic behavior. Soil-metal sliding resistance data, different from those used to develop the model, were acceptably simulated, as the mean square error between the simulated sliding resistance and the measured sliding resistance ranged from 0.653 to 2.44. Keywords: Adhesion, Friction, Normal stress, Sliding path length, Sliding resistance.","PeriodicalId":23120,"journal":{"name":"Transactions of the ASABE","volume":"35 1","pages":"435-446"},"PeriodicalIF":1.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modeling Soil-Metal Sliding Resistance\",\"authors\":\"D. Robbins, Clarence E. Johnson, R. Schafer, T. Way\",\"doi\":\"10.13031/TRANS.13978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"HighlightsA model was developed to express soil-metal sliding resistance in terms of normal stress and sliding path length.Soil-metal sliding resistance data, different from those used to develop the model, were acceptably simulated.The model is expected to be useful in the design and development of soil-engaging equipment.Abstract. Most previous soil-material sliding resistance studies have focused on the measurement and formulation of only qualitative relationships between sliding resistance and the material type, applied normal stress, sliding path length, and/or soil-properties. Few studies have attempted to formulate quantitative mathematical relationships between soil-material sliding resistance and these factors, or to mathematically express the relative contributions of the frictional and adhesive components to the total sliding resistance. In this study, a mathematical model was developed to express the components of soil-metal sliding resistance for a clay soil as functions of applied normal stress and sliding path length. The model is restricted to soil containing enough moisture to exhibit cohesive strength, but not so much moisture to exhibit gross plastic behavior. Soil-metal sliding resistance data, different from those used to develop the model, were acceptably simulated, as the mean square error between the simulated sliding resistance and the measured sliding resistance ranged from 0.653 to 2.44. Keywords: Adhesion, Friction, Normal stress, Sliding path length, Sliding resistance.\",\"PeriodicalId\":23120,\"journal\":{\"name\":\"Transactions of the ASABE\",\"volume\":\"35 1\",\"pages\":\"435-446\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the ASABE\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.13031/TRANS.13978\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the ASABE","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.13031/TRANS.13978","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
HighlightsA model was developed to express soil-metal sliding resistance in terms of normal stress and sliding path length.Soil-metal sliding resistance data, different from those used to develop the model, were acceptably simulated.The model is expected to be useful in the design and development of soil-engaging equipment.Abstract. Most previous soil-material sliding resistance studies have focused on the measurement and formulation of only qualitative relationships between sliding resistance and the material type, applied normal stress, sliding path length, and/or soil-properties. Few studies have attempted to formulate quantitative mathematical relationships between soil-material sliding resistance and these factors, or to mathematically express the relative contributions of the frictional and adhesive components to the total sliding resistance. In this study, a mathematical model was developed to express the components of soil-metal sliding resistance for a clay soil as functions of applied normal stress and sliding path length. The model is restricted to soil containing enough moisture to exhibit cohesive strength, but not so much moisture to exhibit gross plastic behavior. Soil-metal sliding resistance data, different from those used to develop the model, were acceptably simulated, as the mean square error between the simulated sliding resistance and the measured sliding resistance ranged from 0.653 to 2.44. Keywords: Adhesion, Friction, Normal stress, Sliding path length, Sliding resistance.
期刊介绍:
This peer-reviewed journal publishes research that advances the engineering of agricultural, food, and biological systems. Submissions must include original data, analysis or design, or synthesis of existing information; research information for the improvement of education, design, construction, or manufacturing practice; or significant and convincing evidence that confirms and strengthens the findings of others or that revises ideas or challenges accepted theory.