Shaoyang Wang, Byeong-Cheol Kang, Sang-joon Park, T. Ha, L. Krishnan Jagadamma
{"title":"P3HT vs Spiro-OMeTAD作为卤化物钙钛矿室内光伏和运动传感器自供电的空穴传输层","authors":"Shaoyang Wang, Byeong-Cheol Kang, Sang-joon Park, T. Ha, L. Krishnan Jagadamma","doi":"10.1088/2515-7639/accaaa","DOIUrl":null,"url":null,"abstract":"Recent years have witnessed the emergence of indoor photovoltaic (PV) devices with the rapid development of the Internet of things technology field. Among the candidates for indoor PVs, halide perovskites are attracting enormous attention due to their outstanding optoelectronic properties suitable for indoor light harvesting. Here we investigated the indoor PV properties of CH3NH3PbI3-based devices using Spiro-OMeTAD and P3HT as the hole transport layers. The Spiro-OMeTAD-based devices show a consistently higher power conversion efficiency under indoor illumination and 1 sun, with the champion devices showing a power conversion efficiency of 21.0% and 30.1% for the forward and reverse scan under 1000 lux warm white LED illumination. Fewer trap states and higher carrier lifetime were revealed for Spiro-OMeTAD based devices compared to P3HT. The best-performed Spiro-OMeTAD-based devices are used to self-power a wearable motion sensor, which could detect human motion in real-time, to create a primary sensor system with independent power management. By attaching the Spiro-OMeTAD indoor PV device to the strain sensor, the sensor exhibits an accurate and sensitive response with finger bending movements with good repeatability and negligible degradation of mechanical stability, which indicates the success of sensor powering with the indoor PV device.","PeriodicalId":16520,"journal":{"name":"Journal of Nonlinear Optical Physics & Materials","volume":"136 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"P3HT vs Spiro-OMeTAD as a hole transport layer for halide perovskite indoor photovoltaics and self-powering of motion sensors\",\"authors\":\"Shaoyang Wang, Byeong-Cheol Kang, Sang-joon Park, T. Ha, L. Krishnan Jagadamma\",\"doi\":\"10.1088/2515-7639/accaaa\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent years have witnessed the emergence of indoor photovoltaic (PV) devices with the rapid development of the Internet of things technology field. Among the candidates for indoor PVs, halide perovskites are attracting enormous attention due to their outstanding optoelectronic properties suitable for indoor light harvesting. Here we investigated the indoor PV properties of CH3NH3PbI3-based devices using Spiro-OMeTAD and P3HT as the hole transport layers. The Spiro-OMeTAD-based devices show a consistently higher power conversion efficiency under indoor illumination and 1 sun, with the champion devices showing a power conversion efficiency of 21.0% and 30.1% for the forward and reverse scan under 1000 lux warm white LED illumination. Fewer trap states and higher carrier lifetime were revealed for Spiro-OMeTAD based devices compared to P3HT. The best-performed Spiro-OMeTAD-based devices are used to self-power a wearable motion sensor, which could detect human motion in real-time, to create a primary sensor system with independent power management. By attaching the Spiro-OMeTAD indoor PV device to the strain sensor, the sensor exhibits an accurate and sensitive response with finger bending movements with good repeatability and negligible degradation of mechanical stability, which indicates the success of sensor powering with the indoor PV device.\",\"PeriodicalId\":16520,\"journal\":{\"name\":\"Journal of Nonlinear Optical Physics & Materials\",\"volume\":\"136 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nonlinear Optical Physics & Materials\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/2515-7639/accaaa\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Optical Physics & Materials","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2515-7639/accaaa","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
P3HT vs Spiro-OMeTAD as a hole transport layer for halide perovskite indoor photovoltaics and self-powering of motion sensors
Recent years have witnessed the emergence of indoor photovoltaic (PV) devices with the rapid development of the Internet of things technology field. Among the candidates for indoor PVs, halide perovskites are attracting enormous attention due to their outstanding optoelectronic properties suitable for indoor light harvesting. Here we investigated the indoor PV properties of CH3NH3PbI3-based devices using Spiro-OMeTAD and P3HT as the hole transport layers. The Spiro-OMeTAD-based devices show a consistently higher power conversion efficiency under indoor illumination and 1 sun, with the champion devices showing a power conversion efficiency of 21.0% and 30.1% for the forward and reverse scan under 1000 lux warm white LED illumination. Fewer trap states and higher carrier lifetime were revealed for Spiro-OMeTAD based devices compared to P3HT. The best-performed Spiro-OMeTAD-based devices are used to self-power a wearable motion sensor, which could detect human motion in real-time, to create a primary sensor system with independent power management. By attaching the Spiro-OMeTAD indoor PV device to the strain sensor, the sensor exhibits an accurate and sensitive response with finger bending movements with good repeatability and negligible degradation of mechanical stability, which indicates the success of sensor powering with the indoor PV device.
期刊介绍:
This journal is devoted to the rapidly advancing research and development in the field of nonlinear interactions of light with matter. Topics of interest include, but are not limited to, nonlinear optical materials, metamaterials and plasmonics, nano-photonic structures, stimulated scatterings, harmonic generations, wave mixing, real time holography, guided waves and solitons, bistabilities, instabilities and nonlinear dynamics, and their applications in laser and coherent lightwave amplification, guiding, switching, modulation, communication and information processing. Original papers, comprehensive reviews and rapid communications reporting original theories and observations are sought for in these and related areas. This journal will also publish proceedings of important international meetings and workshops. It is intended for graduate students, scientists and researchers in academic, industrial and government research institutions.