vi - r:使用近因性来改进学生模型和领域模型

Ilya M. Goldin, April Galyardt
{"title":"vi - r:使用近因性来改进学生模型和领域模型","authors":"Ilya M. Goldin, April Galyardt","doi":"10.1145/2724660.2728706","DOIUrl":null,"url":null,"abstract":"We describe a new method to troubleshoot and improve domain and student models from interactive learning environments. The method applies as long as the models can generate predictions of student behavior. The method is a visualization of model predictions, categorized using a metric of recent performance. We describe the method, its application in prior work to student models, and a proposed extension to domain models.","PeriodicalId":20664,"journal":{"name":"Proceedings of the Second (2015) ACM Conference on Learning @ Scale","volume":"260 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Viz-R: Using Recency to Improve Student and Domain Models\",\"authors\":\"Ilya M. Goldin, April Galyardt\",\"doi\":\"10.1145/2724660.2728706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a new method to troubleshoot and improve domain and student models from interactive learning environments. The method applies as long as the models can generate predictions of student behavior. The method is a visualization of model predictions, categorized using a metric of recent performance. We describe the method, its application in prior work to student models, and a proposed extension to domain models.\",\"PeriodicalId\":20664,\"journal\":{\"name\":\"Proceedings of the Second (2015) ACM Conference on Learning @ Scale\",\"volume\":\"260 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Second (2015) ACM Conference on Learning @ Scale\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2724660.2728706\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Second (2015) ACM Conference on Learning @ Scale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2724660.2728706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们描述了一种新的方法来排除故障并改进交互式学习环境中的领域和学生模型。只要模型能够预测学生的行为,这种方法就适用。该方法是模型预测的可视化,使用最近表现的度量进行分类。我们描述了该方法,它在学生模型的前期工作中的应用,以及对领域模型的扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Viz-R: Using Recency to Improve Student and Domain Models
We describe a new method to troubleshoot and improve domain and student models from interactive learning environments. The method applies as long as the models can generate predictions of student behavior. The method is a visualization of model predictions, categorized using a metric of recent performance. We describe the method, its application in prior work to student models, and a proposed extension to domain models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信