基于一阶优化的网络快速聚类检测

IF 1.9 Q1 MATHEMATICS, APPLIED
I. Bomze, F. Rinaldi, Damiano Zeffiro
{"title":"基于一阶优化的网络快速聚类检测","authors":"I. Bomze, F. Rinaldi, Damiano Zeffiro","doi":"10.1137/21m1408658","DOIUrl":null,"url":null,"abstract":"Cluster detection plays a fundamental role in the analysis of data. In this paper, we focus on the use of s-defective clique models for network-based cluster detection and propose a nonlinear optimization approach that efficiently handles those models in practice. In particular, we introduce an equivalent continuous formulation for the problem under analysis, and we analyze some tailored variants of the Frank-Wolfe algorithm that enable us to quickly find maximal s-defective cliques. The good practical behavior of those algorithmic tools, which is closely connected to their support identification properties, makes them very appealing in practical applications. The reported numerical results clearly show the effectiveness of the proposed approach.","PeriodicalId":74797,"journal":{"name":"SIAM journal on mathematics of data science","volume":"12 1","pages":"285-305"},"PeriodicalIF":1.9000,"publicationDate":"2021-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Fast Cluster Detection in Networks by First Order Optimization\",\"authors\":\"I. Bomze, F. Rinaldi, Damiano Zeffiro\",\"doi\":\"10.1137/21m1408658\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cluster detection plays a fundamental role in the analysis of data. In this paper, we focus on the use of s-defective clique models for network-based cluster detection and propose a nonlinear optimization approach that efficiently handles those models in practice. In particular, we introduce an equivalent continuous formulation for the problem under analysis, and we analyze some tailored variants of the Frank-Wolfe algorithm that enable us to quickly find maximal s-defective cliques. The good practical behavior of those algorithmic tools, which is closely connected to their support identification properties, makes them very appealing in practical applications. The reported numerical results clearly show the effectiveness of the proposed approach.\",\"PeriodicalId\":74797,\"journal\":{\"name\":\"SIAM journal on mathematics of data science\",\"volume\":\"12 1\",\"pages\":\"285-305\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2021-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM journal on mathematics of data science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/21m1408658\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM journal on mathematics of data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/21m1408658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 6

摘要

聚类检测在数据分析中起着重要的作用。在本文中,我们着重于使用s缺陷团模型进行基于网络的聚类检测,并提出了一种在实践中有效处理这些模型的非线性优化方法。特别地,我们为所分析的问题引入了一个等效连续公式,并分析了Frank-Wolfe算法的一些定制变体,使我们能够快速找到最大的s缺陷团。这些算法工具具有良好的实用性能,这与它们的支持识别特性密切相关,这使得它们在实际应用中非常有吸引力。所报道的数值结果清楚地表明了所提出方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast Cluster Detection in Networks by First Order Optimization
Cluster detection plays a fundamental role in the analysis of data. In this paper, we focus on the use of s-defective clique models for network-based cluster detection and propose a nonlinear optimization approach that efficiently handles those models in practice. In particular, we introduce an equivalent continuous formulation for the problem under analysis, and we analyze some tailored variants of the Frank-Wolfe algorithm that enable us to quickly find maximal s-defective cliques. The good practical behavior of those algorithmic tools, which is closely connected to their support identification properties, makes them very appealing in practical applications. The reported numerical results clearly show the effectiveness of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信