用于心电图自动检测和描绘的U-Net体系结构

G. Jiménez-Pérez, A. Alcaine, O. Camara
{"title":"用于心电图自动检测和描绘的U-Net体系结构","authors":"G. Jiménez-Pérez, A. Alcaine, O. Camara","doi":"10.23919/CinC49843.2019.9005824","DOIUrl":null,"url":null,"abstract":"Automatic detection and delineation of the electrocardiogram (ECG) is usually the first step for many feature extraction tasks. Although deep learning (DL) approaches have been proposed in the literature, those employ non-optimal and outdated architectures. Thus, rule-based algorithms remain as state-of-the-art. Nevertheless, those may not generalize on other datasets and require difficult offline tuning for adapting to new scenarios. This work frames this task as a segmentation problem for using an adaptation of the U-Net architecture, a fully convolutional network. The detection performance shows a precision of 89.27%, 98.18% and 93.60% for the detection of the P, QRS and T waves, respectively, and a recall of 89.07%, 99.47% and 95.21%. This work shows promising results, outperforming existing DL approaches while being more generalizable than rule-based methods.","PeriodicalId":6697,"journal":{"name":"2019 Computing in Cardiology (CinC)","volume":"5 1","pages":"Page 1-Page 4"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"U-Net Architecture for the Automatic Detection and Delineation of the Electrocardiogram\",\"authors\":\"G. Jiménez-Pérez, A. Alcaine, O. Camara\",\"doi\":\"10.23919/CinC49843.2019.9005824\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic detection and delineation of the electrocardiogram (ECG) is usually the first step for many feature extraction tasks. Although deep learning (DL) approaches have been proposed in the literature, those employ non-optimal and outdated architectures. Thus, rule-based algorithms remain as state-of-the-art. Nevertheless, those may not generalize on other datasets and require difficult offline tuning for adapting to new scenarios. This work frames this task as a segmentation problem for using an adaptation of the U-Net architecture, a fully convolutional network. The detection performance shows a precision of 89.27%, 98.18% and 93.60% for the detection of the P, QRS and T waves, respectively, and a recall of 89.07%, 99.47% and 95.21%. This work shows promising results, outperforming existing DL approaches while being more generalizable than rule-based methods.\",\"PeriodicalId\":6697,\"journal\":{\"name\":\"2019 Computing in Cardiology (CinC)\",\"volume\":\"5 1\",\"pages\":\"Page 1-Page 4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Computing in Cardiology (CinC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/CinC49843.2019.9005824\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Computing in Cardiology (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CinC49843.2019.9005824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

心电图的自动检测和描绘通常是许多特征提取任务的第一步。虽然深度学习(DL)方法已经在文献中提出,但这些方法采用了非最优和过时的架构。因此,基于规则的算法仍然是最先进的。然而,这些可能不能推广到其他数据集,并且需要艰难的离线调优以适应新的场景。这项工作将这项任务定义为使用U-Net架构(一个全卷积网络)的自适应分割问题。P波、QRS波和T波的检测精度分别为89.27%、98.18%和93.60%,召回率分别为89.07%、99.47%和95.21%。这项工作显示了有希望的结果,优于现有的深度学习方法,同时比基于规则的方法更具通用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
U-Net Architecture for the Automatic Detection and Delineation of the Electrocardiogram
Automatic detection and delineation of the electrocardiogram (ECG) is usually the first step for many feature extraction tasks. Although deep learning (DL) approaches have been proposed in the literature, those employ non-optimal and outdated architectures. Thus, rule-based algorithms remain as state-of-the-art. Nevertheless, those may not generalize on other datasets and require difficult offline tuning for adapting to new scenarios. This work frames this task as a segmentation problem for using an adaptation of the U-Net architecture, a fully convolutional network. The detection performance shows a precision of 89.27%, 98.18% and 93.60% for the detection of the P, QRS and T waves, respectively, and a recall of 89.07%, 99.47% and 95.21%. This work shows promising results, outperforming existing DL approaches while being more generalizable than rule-based methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信