解析函数的Banach空间上的复合算子

IF 0.9 4区 数学 Q2 Mathematics
M. Mastyło, P. Mleczko
{"title":"解析函数的Banach空间上的复合算子","authors":"M. Mastyło, P. Mleczko","doi":"10.5186/AASFM.2019.4436","DOIUrl":null,"url":null,"abstract":"In the paper composition operators acting on quasi-Banach spaces of analytic functions on the unit disc of the complex plane are studied. In particular characterizations in terms of a function φ of order bounded as well as summing operators Cφ are presented, if Cφ is an operator from an abstract Hardy space. Applications are shown for the special case of Hardy–Orlicz, Hardy–Lorentz, and growth spaces.","PeriodicalId":50787,"journal":{"name":"Annales Academiae Scientiarum Fennicae-Mathematica","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Composition operators on Banach spaces of analytic functions\",\"authors\":\"M. Mastyło, P. Mleczko\",\"doi\":\"10.5186/AASFM.2019.4436\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the paper composition operators acting on quasi-Banach spaces of analytic functions on the unit disc of the complex plane are studied. In particular characterizations in terms of a function φ of order bounded as well as summing operators Cφ are presented, if Cφ is an operator from an abstract Hardy space. Applications are shown for the special case of Hardy–Orlicz, Hardy–Lorentz, and growth spaces.\",\"PeriodicalId\":50787,\"journal\":{\"name\":\"Annales Academiae Scientiarum Fennicae-Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Academiae Scientiarum Fennicae-Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5186/AASFM.2019.4436\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Academiae Scientiarum Fennicae-Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5186/AASFM.2019.4436","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

研究复平面单位圆盘上解析函数的拟巴拿赫空间上的复合算子。特别地,如果Cφ是一个来自抽象Hardy空间的算子,则给出了关于阶有界函数φ和求和算子Cφ的刻画。给出了Hardy-Orlicz、Hardy-Lorentz和生长空间的特殊情况下的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Composition operators on Banach spaces of analytic functions
In the paper composition operators acting on quasi-Banach spaces of analytic functions on the unit disc of the complex plane are studied. In particular characterizations in terms of a function φ of order bounded as well as summing operators Cφ are presented, if Cφ is an operator from an abstract Hardy space. Applications are shown for the special case of Hardy–Orlicz, Hardy–Lorentz, and growth spaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Annales Academiæ Scientiarum Fennicæ Mathematica is published by Academia Scientiarum Fennica since 1941. It was founded and edited, until 1974, by P.J. Myrberg. Its editor is Olli Martio. AASF publishes refereed papers in all fields of mathematics with emphasis on analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信