四项递归关系中的全局吸引性

IF 0.7 Q2 MATHEMATICS
Longyan Li, S. Cheng
{"title":"四项递归关系中的全局吸引性","authors":"Longyan Li, S. Cheng","doi":"10.5556/J.TKJM.30.1999.4229","DOIUrl":null,"url":null,"abstract":"where (Hl) f: (O,oo) -t Rand g: [O,oo) x [O,oo) -t Rare positive functions; and (H2) f is nondecreasing and g is nonincreasing in each of its independent variables. A positive fixed point x* that satisfies x = f(x)g(x, x) is also called a positive equi­ librium point of equation (1.1). Our objective of this note is to show that under mild conditions on the functions f and g, every real sequence in n tends to one of the positive equilibrium points of (1.1). Similar results have been obtained for a number of recureence relations, see e.g. Kocic and Ladas [1], Camouzis et al. [2], Li et al. [3], and Li [4]. Indeed, this note is motivated by a concern raised in Kocic and Ladas [1, p.46] related to the stability of recurrence relations.","PeriodicalId":45776,"journal":{"name":"Tamkang Journal of Mathematics","volume":"1 1","pages":"223-229"},"PeriodicalIF":0.7000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GLOBAL ATTRACTIVITY IN A FOUR-TERM RECURRENCE RELATION\",\"authors\":\"Longyan Li, S. Cheng\",\"doi\":\"10.5556/J.TKJM.30.1999.4229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"where (Hl) f: (O,oo) -t Rand g: [O,oo) x [O,oo) -t Rare positive functions; and (H2) f is nondecreasing and g is nonincreasing in each of its independent variables. A positive fixed point x* that satisfies x = f(x)g(x, x) is also called a positive equi­ librium point of equation (1.1). Our objective of this note is to show that under mild conditions on the functions f and g, every real sequence in n tends to one of the positive equilibrium points of (1.1). Similar results have been obtained for a number of recureence relations, see e.g. Kocic and Ladas [1], Camouzis et al. [2], Li et al. [3], and Li [4]. Indeed, this note is motivated by a concern raised in Kocic and Ladas [1, p.46] related to the stability of recurrence relations.\",\"PeriodicalId\":45776,\"journal\":{\"name\":\"Tamkang Journal of Mathematics\",\"volume\":\"1 1\",\"pages\":\"223-229\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tamkang Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5556/J.TKJM.30.1999.4229\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tamkang Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5556/J.TKJM.30.1999.4229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

其中(Hl) f: (O,oo) -t Rand g: [O,oo) x [O,oo) -t稀有正函数;(H2) f是非递减的,g是非递增的。满足x = f(x)g(x, x)的正不动点x*也称为式(1.1)的正平衡平衡点。我们这篇笔记的目的是证明在函数f和g的温和条件下,n中的每一个实序列趋向于(1.1)的正平衡点之一。许多递归关系也得到了类似的结果,如Kocic和Ladas[1]、zis等人[2]、Li等人[3]和Li[4]。实际上,这一说明的动机是Kocic和Ladas[1,第46页]对递归关系的稳定性提出的关切。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GLOBAL ATTRACTIVITY IN A FOUR-TERM RECURRENCE RELATION
where (Hl) f: (O,oo) -t Rand g: [O,oo) x [O,oo) -t Rare positive functions; and (H2) f is nondecreasing and g is nonincreasing in each of its independent variables. A positive fixed point x* that satisfies x = f(x)g(x, x) is also called a positive equi­ librium point of equation (1.1). Our objective of this note is to show that under mild conditions on the functions f and g, every real sequence in n tends to one of the positive equilibrium points of (1.1). Similar results have been obtained for a number of recureence relations, see e.g. Kocic and Ladas [1], Camouzis et al. [2], Li et al. [3], and Li [4]. Indeed, this note is motivated by a concern raised in Kocic and Ladas [1, p.46] related to the stability of recurrence relations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
11
期刊介绍: To promote research interactions between local and overseas researchers, the Department has been publishing an international mathematics journal, the Tamkang Journal of Mathematics. The journal started as a biannual journal in 1970 and is devoted to high-quality original research papers in pure and applied mathematics. In 1985 it has become a quarterly journal. The four issues are out for distribution at the end of March, June, September and December. The articles published in Tamkang Journal of Mathematics cover diverse mathematical disciplines. Submission of papers comes from all over the world. All articles are subjected to peer review from an international pool of referees.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信