数据驱动的Covid-19预后评估

Harshit Sharma, R. Nagar, Deepak Mishra
{"title":"数据驱动的Covid-19预后评估","authors":"Harshit Sharma, R. Nagar, Deepak Mishra","doi":"10.1109/ISBI52829.2022.9761406","DOIUrl":null,"url":null,"abstract":"Continuous spread of novel coronavirus (COVID-19) and availability of limited resources force the severity-based allocation of resources. While it is essential to have a reliable severity assessment method, it is even more critical to have a prognosis model to estimate infection progress in individuals. An accurate estimate of infection progression would naturally help in optimized treatment and morbidity reduction. We aim at the prognosis of the COVID-19 infections including, ground-glass opacities, consolidation, and pleural effusion, from the longitudinal chest X-ray (CXR) images of the patient. For this purpose, we first propose a learning-based framework that predicts infection type from a given CXR image. This helps in finding low dimensional embeddings of CXR images, which we use in a recurrent learning framework to predict the type of infection for the subsequent days. We achieve a test AUC of 0.85 for infection type prediction and a test AUC of 0.88 for prognosis on the benchmark COVID-19 dataset.","PeriodicalId":6827,"journal":{"name":"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)","volume":"64 2 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Data Driven Estimation of Covid-19 Prognosis\",\"authors\":\"Harshit Sharma, R. Nagar, Deepak Mishra\",\"doi\":\"10.1109/ISBI52829.2022.9761406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Continuous spread of novel coronavirus (COVID-19) and availability of limited resources force the severity-based allocation of resources. While it is essential to have a reliable severity assessment method, it is even more critical to have a prognosis model to estimate infection progress in individuals. An accurate estimate of infection progression would naturally help in optimized treatment and morbidity reduction. We aim at the prognosis of the COVID-19 infections including, ground-glass opacities, consolidation, and pleural effusion, from the longitudinal chest X-ray (CXR) images of the patient. For this purpose, we first propose a learning-based framework that predicts infection type from a given CXR image. This helps in finding low dimensional embeddings of CXR images, which we use in a recurrent learning framework to predict the type of infection for the subsequent days. We achieve a test AUC of 0.85 for infection type prediction and a test AUC of 0.88 for prognosis on the benchmark COVID-19 dataset.\",\"PeriodicalId\":6827,\"journal\":{\"name\":\"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)\",\"volume\":\"64 2 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI52829.2022.9761406\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI52829.2022.9761406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

新型冠状病毒(COVID-19)的持续传播和有限的资源可用性迫使资源分配基于严重程度。虽然有一个可靠的严重程度评估方法是必不可少的,但更重要的是有一个预后模型来估计个体的感染进展。对感染进展的准确估计自然有助于优化治疗和降低发病率。我们的目的是从患者的纵向胸部x线(CXR)图像中观察COVID-19感染的预后,包括磨玻璃样混浊、实变和胸腔积液。为此,我们首先提出了一个基于学习的框架,从给定的CXR图像预测感染类型。这有助于找到CXR图像的低维嵌入,我们在循环学习框架中使用它来预测随后几天的感染类型。我们在基准COVID-19数据集上实现了感染类型预测的测试AUC为0.85,预测的测试AUC为0.88。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data Driven Estimation of Covid-19 Prognosis
Continuous spread of novel coronavirus (COVID-19) and availability of limited resources force the severity-based allocation of resources. While it is essential to have a reliable severity assessment method, it is even more critical to have a prognosis model to estimate infection progress in individuals. An accurate estimate of infection progression would naturally help in optimized treatment and morbidity reduction. We aim at the prognosis of the COVID-19 infections including, ground-glass opacities, consolidation, and pleural effusion, from the longitudinal chest X-ray (CXR) images of the patient. For this purpose, we first propose a learning-based framework that predicts infection type from a given CXR image. This helps in finding low dimensional embeddings of CXR images, which we use in a recurrent learning framework to predict the type of infection for the subsequent days. We achieve a test AUC of 0.85 for infection type prediction and a test AUC of 0.88 for prognosis on the benchmark COVID-19 dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信