利用随机拟蒙特卡罗提高实验全贝叶斯优化设计的效率

C. Drovandi, Minh-Ngoc Tran
{"title":"利用随机拟蒙特卡罗提高实验全贝叶斯优化设计的效率","authors":"C. Drovandi, Minh-Ngoc Tran","doi":"10.1214/16-BA1045","DOIUrl":null,"url":null,"abstract":"Optimal experimental design is an important methodology for most efficiently allocating resources in an experiment to best achieve some goal. Bayesian experimental design considers the potential impact that various choices of the controllable variables has on the posterior distribution of the unknowns. Optimal Bayesian design involves optimising an expected utility function, which is an analytically intractable integral over the prior predictive distribution. These integrals are typically estimated via standard Monte Carlo methods. In this paper, we demonstrate that the use of randomised quasi-Monte Carlo can bring significant reductions to the variance of the estimated expected utility. This variance reduction will then lead to a more efficient optimisation algorithm for maximising the expected utility.","PeriodicalId":21486,"journal":{"name":"Science & Engineering Faculty","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Improving the efficiency of fully Bayesian optimal design of experiments using randomised quasi-Monte Carlo\",\"authors\":\"C. Drovandi, Minh-Ngoc Tran\",\"doi\":\"10.1214/16-BA1045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optimal experimental design is an important methodology for most efficiently allocating resources in an experiment to best achieve some goal. Bayesian experimental design considers the potential impact that various choices of the controllable variables has on the posterior distribution of the unknowns. Optimal Bayesian design involves optimising an expected utility function, which is an analytically intractable integral over the prior predictive distribution. These integrals are typically estimated via standard Monte Carlo methods. In this paper, we demonstrate that the use of randomised quasi-Monte Carlo can bring significant reductions to the variance of the estimated expected utility. This variance reduction will then lead to a more efficient optimisation algorithm for maximising the expected utility.\",\"PeriodicalId\":21486,\"journal\":{\"name\":\"Science & Engineering Faculty\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science & Engineering Faculty\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/16-BA1045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science & Engineering Faculty","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/16-BA1045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

最优实验设计是在实验中最有效地分配资源以达到最佳目标的一种重要方法。贝叶斯实验设计考虑了可控变量的各种选择对未知变量后验分布的潜在影响。最优贝叶斯设计涉及优化期望效用函数,这是一个解析上难以处理的先验预测分布积分。这些积分通常是通过标准蒙特卡罗方法估计的。在本文中,我们证明了随机化拟蒙特卡罗的使用可以显著减少估计的期望效用的方差。这种方差的减少将导致更有效的优化算法,以最大化预期效用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving the efficiency of fully Bayesian optimal design of experiments using randomised quasi-Monte Carlo
Optimal experimental design is an important methodology for most efficiently allocating resources in an experiment to best achieve some goal. Bayesian experimental design considers the potential impact that various choices of the controllable variables has on the posterior distribution of the unknowns. Optimal Bayesian design involves optimising an expected utility function, which is an analytically intractable integral over the prior predictive distribution. These integrals are typically estimated via standard Monte Carlo methods. In this paper, we demonstrate that the use of randomised quasi-Monte Carlo can bring significant reductions to the variance of the estimated expected utility. This variance reduction will then lead to a more efficient optimisation algorithm for maximising the expected utility.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信