Quasiregular曲线

IF 0.9 4区 数学 Q2 Mathematics
Pekka Pankka
{"title":"Quasiregular曲线","authors":"Pekka Pankka","doi":"10.5186/aasfm.2020.4534","DOIUrl":null,"url":null,"abstract":"We extend the notion of a pseudoholomorphic vector of Iwaniec, Verchota, and Vogel to mappings between Riemannian manifolds. Since this class of mappings contains both quasiregular mappings and (pseudo)holomorphic curves, we call them quasiregular curves. Let $n\\le m$ and let $M$ be an oriented Riemannian $n$-manifold, $N$ a Riemannian $m$-manifold, and $\\omega \\in \\Omega^n(N)$ a smooth closed non-vanishing $n$-form on $N$. A continuous Sobolev map $f\\colon M \\to N$ in $W^{1,n}_{\\mathrm{loc}}(M,N)$ is a $K$-quasiregular $\\omega$-curve for $K\\ge 1$ if $f$ satisfies the distortion inequality $(\\lVert\\omega\\rVert\\circ f)\\lVert Df\\rVert^n \\le K (\\star f^* \\omega)$ almost everywhere in $M$. We prove that quasiregular curves satisfy Gromov's quasiminimality condition and a version of Liouville's theorem stating that bounded quasiregular curves $\\mathbb R^n \\to \\mathbb R^m$ are constant. We also prove a limit theorem that a locally uniform limit $f\\colon M \\to N$ of $K$-quasiregular $\\omega$-curves $(f_j \\colon M\\to N)$ is also a $K$-quasiregular $\\omega$-curve. We also show that a non-constant quasiregular $\\omega$-curve $f\\colon M \\to N$ is discrete and satisfies $\\star f^*\\omega >0$ almost everywhere, if one of the following additional conditions hold: the form $\\omega$ is simple or the map $f$ is $C^1$-smooth.","PeriodicalId":50787,"journal":{"name":"Annales Academiae Scientiarum Fennicae-Mathematica","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2019-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Quasiregular curves\",\"authors\":\"Pekka Pankka\",\"doi\":\"10.5186/aasfm.2020.4534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We extend the notion of a pseudoholomorphic vector of Iwaniec, Verchota, and Vogel to mappings between Riemannian manifolds. Since this class of mappings contains both quasiregular mappings and (pseudo)holomorphic curves, we call them quasiregular curves. Let $n\\\\le m$ and let $M$ be an oriented Riemannian $n$-manifold, $N$ a Riemannian $m$-manifold, and $\\\\omega \\\\in \\\\Omega^n(N)$ a smooth closed non-vanishing $n$-form on $N$. A continuous Sobolev map $f\\\\colon M \\\\to N$ in $W^{1,n}_{\\\\mathrm{loc}}(M,N)$ is a $K$-quasiregular $\\\\omega$-curve for $K\\\\ge 1$ if $f$ satisfies the distortion inequality $(\\\\lVert\\\\omega\\\\rVert\\\\circ f)\\\\lVert Df\\\\rVert^n \\\\le K (\\\\star f^* \\\\omega)$ almost everywhere in $M$. We prove that quasiregular curves satisfy Gromov's quasiminimality condition and a version of Liouville's theorem stating that bounded quasiregular curves $\\\\mathbb R^n \\\\to \\\\mathbb R^m$ are constant. We also prove a limit theorem that a locally uniform limit $f\\\\colon M \\\\to N$ of $K$-quasiregular $\\\\omega$-curves $(f_j \\\\colon M\\\\to N)$ is also a $K$-quasiregular $\\\\omega$-curve. We also show that a non-constant quasiregular $\\\\omega$-curve $f\\\\colon M \\\\to N$ is discrete and satisfies $\\\\star f^*\\\\omega >0$ almost everywhere, if one of the following additional conditions hold: the form $\\\\omega$ is simple or the map $f$ is $C^1$-smooth.\",\"PeriodicalId\":50787,\"journal\":{\"name\":\"Annales Academiae Scientiarum Fennicae-Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2019-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Academiae Scientiarum Fennicae-Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5186/aasfm.2020.4534\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Academiae Scientiarum Fennicae-Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5186/aasfm.2020.4534","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 7

摘要

我们将Iwaniec, Verchota和Vogel的伪全纯向量的概念推广到黎曼流形之间的映射。由于这类映射既包含拟正则映射又包含(伪)全纯曲线,我们称它们为拟正则曲线。让 $n\le m$ 让 $M$ 做一个有方向的黎曼人 $n$-歧管; $N$ 一个黎曼量 $m$-歧管,和 $\omega \in \Omega^n(N)$ 光滑闭合不消失 $n$-form on $N$. 一个连续的Sobolev图 $f\colon M \to N$ 在 $W^{1,n}_{\mathrm{loc}}(M,N)$ 是? $K$-拟正则 $\omega$-曲线 $K\ge 1$ 如果 $f$ 满足畸变不等式 $(\lVert\omega\rVert\circ f)\lVert Df\rVert^n \le K (\star f^* \omega)$ 几乎所有地方 $M$. 证明了拟正则曲线满足Gromov的拟极小性条件和Liouville定理的一个版本,证明了拟正则曲线是有界的 $\mathbb R^n \to \mathbb R^m$ 都是常数。我们还证明了一个局部一致极限的极限定理 $f\colon M \to N$ 的 $K$-拟正则 $\omega$-曲线 $(f_j \colon M\to N)$ 也是一个 $K$-拟正则 $\omega$-曲线。我们也证明了一个非常数的拟正则 $\omega$-曲线 $f\colon M \to N$ 是离散的并且满足 $\star f^*\omega >0$ 几乎在任何地方,如果下列附加条件之一成立 $\omega$ 是简单还是地图 $f$ 是 $C^1$-平滑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quasiregular curves
We extend the notion of a pseudoholomorphic vector of Iwaniec, Verchota, and Vogel to mappings between Riemannian manifolds. Since this class of mappings contains both quasiregular mappings and (pseudo)holomorphic curves, we call them quasiregular curves. Let $n\le m$ and let $M$ be an oriented Riemannian $n$-manifold, $N$ a Riemannian $m$-manifold, and $\omega \in \Omega^n(N)$ a smooth closed non-vanishing $n$-form on $N$. A continuous Sobolev map $f\colon M \to N$ in $W^{1,n}_{\mathrm{loc}}(M,N)$ is a $K$-quasiregular $\omega$-curve for $K\ge 1$ if $f$ satisfies the distortion inequality $(\lVert\omega\rVert\circ f)\lVert Df\rVert^n \le K (\star f^* \omega)$ almost everywhere in $M$. We prove that quasiregular curves satisfy Gromov's quasiminimality condition and a version of Liouville's theorem stating that bounded quasiregular curves $\mathbb R^n \to \mathbb R^m$ are constant. We also prove a limit theorem that a locally uniform limit $f\colon M \to N$ of $K$-quasiregular $\omega$-curves $(f_j \colon M\to N)$ is also a $K$-quasiregular $\omega$-curve. We also show that a non-constant quasiregular $\omega$-curve $f\colon M \to N$ is discrete and satisfies $\star f^*\omega >0$ almost everywhere, if one of the following additional conditions hold: the form $\omega$ is simple or the map $f$ is $C^1$-smooth.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Annales Academiæ Scientiarum Fennicæ Mathematica is published by Academia Scientiarum Fennica since 1941. It was founded and edited, until 1974, by P.J. Myrberg. Its editor is Olli Martio. AASF publishes refereed papers in all fields of mathematics with emphasis on analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信