Wasserstein分布鲁棒优化的正则化

IF 1.3 3区 数学 Q4 AUTOMATION & CONTROL SYSTEMS
Waïss Azizian, F. Iutzeler, J. Malick
{"title":"Wasserstein分布鲁棒优化的正则化","authors":"Waïss Azizian, F. Iutzeler, J. Malick","doi":"10.1051/cocv/2023019","DOIUrl":null,"url":null,"abstract":"Optimal transport has recently proved to be a useful tool in various machine learning applications, needing comparisons of probability measures. Among these, applications of distributionally robust optimization naturally involve Wasserstein distances in their models of uncertainty, capturing data shifts or worst-case scenarios. Inspired by the success of the regularization of Wasserstein distances in optimal transport, we study in this paper the regularization of Wassserstein distributionally robust optimization. First, we derive a general strong duality result of regularized Wasserstein distributionally robust problems. Second, we refine this duality result in the case of entropic regularization and provide an approximation result when the regularization parameters vanish.","PeriodicalId":50500,"journal":{"name":"Esaim-Control Optimisation and Calculus of Variations","volume":"49 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Regularization for Wasserstein distributionally robust optimization\\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \",\"authors\":\"Waïss Azizian, F. Iutzeler, J. Malick\",\"doi\":\"10.1051/cocv/2023019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optimal transport has recently proved to be a useful tool in various machine learning applications, needing comparisons of probability measures. Among these, applications of distributionally robust optimization naturally involve Wasserstein distances in their models of uncertainty, capturing data shifts or worst-case scenarios. Inspired by the success of the regularization of Wasserstein distances in optimal transport, we study in this paper the regularization of Wassserstein distributionally robust optimization. First, we derive a general strong duality result of regularized Wasserstein distributionally robust problems. Second, we refine this duality result in the case of entropic regularization and provide an approximation result when the regularization parameters vanish.\",\"PeriodicalId\":50500,\"journal\":{\"name\":\"Esaim-Control Optimisation and Calculus of Variations\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Esaim-Control Optimisation and Calculus of Variations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1051/cocv/2023019\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Esaim-Control Optimisation and Calculus of Variations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/cocv/2023019","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 6

摘要

最优传输最近被证明是各种机器学习应用中一个有用的工具,需要对概率度量进行比较。其中,分布鲁棒优化的应用自然涉及不确定性模型中的沃瑟斯坦距离,捕获数据移动或最坏情况。受最优输运中Wasserstein距离正则化成功的启发,本文研究了Wasserstein分布鲁棒优化的正则化问题。首先,我们得到了正则化Wasserstein分布鲁棒问题的一般强对偶结果。其次,我们改进了熵正则化情况下的对偶性结果,并提供了正则化参数消失时的近似结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regularization for Wasserstein distributionally robust optimization                                                              
Optimal transport has recently proved to be a useful tool in various machine learning applications, needing comparisons of probability measures. Among these, applications of distributionally robust optimization naturally involve Wasserstein distances in their models of uncertainty, capturing data shifts or worst-case scenarios. Inspired by the success of the regularization of Wasserstein distances in optimal transport, we study in this paper the regularization of Wassserstein distributionally robust optimization. First, we derive a general strong duality result of regularized Wasserstein distributionally robust problems. Second, we refine this duality result in the case of entropic regularization and provide an approximation result when the regularization parameters vanish.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Esaim-Control Optimisation and Calculus of Variations
Esaim-Control Optimisation and Calculus of Variations Mathematics-Computational Mathematics
自引率
7.10%
发文量
77
期刊介绍: ESAIM: COCV strives to publish rapidly and efficiently papers and surveys in the areas of Control, Optimisation and Calculus of Variations. Articles may be theoretical, computational, or both, and they will cover contemporary subjects with impact in forefront technology, biosciences, materials science, computer vision, continuum physics, decision sciences and other allied disciplines. Targeted topics include: in control: modeling, controllability, optimal control, stabilization, control design, hybrid control, robustness analysis, numerical and computational methods for control, stochastic or deterministic, continuous or discrete control systems, finite-dimensional or infinite-dimensional control systems, geometric control, quantum control, game theory; in optimisation: mathematical programming, large scale systems, stochastic optimisation, combinatorial optimisation, shape optimisation, convex or nonsmooth optimisation, inverse problems, interior point methods, duality methods, numerical methods, convergence and complexity, global optimisation, optimisation and dynamical systems, optimal transport, machine learning, image or signal analysis; in calculus of variations: variational methods for differential equations and Hamiltonian systems, variational inequalities; semicontinuity and convergence, existence and regularity of minimizers and critical points of functionals, relaxation; geometric problems and the use and development of geometric measure theory tools; problems involving randomness; viscosity solutions; numerical methods; homogenization, multiscale and singular perturbation problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信