{"title":"PVC凝胶致动器的建模与实验研究","authors":"Zachary Frank, Zakai J Olsen, T. Hwang, K. Kim","doi":"10.1115/dscc2019-9100","DOIUrl":null,"url":null,"abstract":"\n Plasticized polyvinyl chloride (PVC) gels are a promising material for soft robotic actuators due to their fast response rates and remarkable deformation characteristics. A variety of different actuator types can be made with PVC gels because their deformation via anodophilic creep is highly customizable by alteration of the electrode configuration, applied electric field, surface microstructure, and plasticizer content. This level of customization is not typically possible with other electroactive polymer actuators. Several attempts have been made to model PVC gel anodophilic creep actuation. Most of these have been limited in scope to particular actuator types and are phenomenological models. An accurate predictive model is necessary for the implementation and control of these actuators in the field of soft robotics, and this can be better achieved through the use of a physics-based electromechanical model.\n In this paper the underlying mechanisms for PVC gel actuation are discussed, and simulation results are shown. We present our finite element model which seeks to move towards a more general model for PVC gels derived from first principles. This electromechanical model is based on the Maxwell stress that is developed within the PVC gel along the anode when an electric field is applied. COMSOL Multiphysics modeling software is utilized for the simulation of PVC gel deformation when exposed to an electric potential. In addition, an experimental study of PVC gels was conducted to verify the model for mesh-type contraction actuators, and the simulated results provide context and support for the underlying mechanisms discussed.","PeriodicalId":41412,"journal":{"name":"Mechatronic Systems and Control","volume":"41 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2019-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Modelling and Experimental Study for PVC Gel Actuators\",\"authors\":\"Zachary Frank, Zakai J Olsen, T. Hwang, K. Kim\",\"doi\":\"10.1115/dscc2019-9100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Plasticized polyvinyl chloride (PVC) gels are a promising material for soft robotic actuators due to their fast response rates and remarkable deformation characteristics. A variety of different actuator types can be made with PVC gels because their deformation via anodophilic creep is highly customizable by alteration of the electrode configuration, applied electric field, surface microstructure, and plasticizer content. This level of customization is not typically possible with other electroactive polymer actuators. Several attempts have been made to model PVC gel anodophilic creep actuation. Most of these have been limited in scope to particular actuator types and are phenomenological models. An accurate predictive model is necessary for the implementation and control of these actuators in the field of soft robotics, and this can be better achieved through the use of a physics-based electromechanical model.\\n In this paper the underlying mechanisms for PVC gel actuation are discussed, and simulation results are shown. We present our finite element model which seeks to move towards a more general model for PVC gels derived from first principles. This electromechanical model is based on the Maxwell stress that is developed within the PVC gel along the anode when an electric field is applied. COMSOL Multiphysics modeling software is utilized for the simulation of PVC gel deformation when exposed to an electric potential. In addition, an experimental study of PVC gels was conducted to verify the model for mesh-type contraction actuators, and the simulated results provide context and support for the underlying mechanisms discussed.\",\"PeriodicalId\":41412,\"journal\":{\"name\":\"Mechatronic Systems and Control\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2019-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechatronic Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/dscc2019-9100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechatronic Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/dscc2019-9100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Modelling and Experimental Study for PVC Gel Actuators
Plasticized polyvinyl chloride (PVC) gels are a promising material for soft robotic actuators due to their fast response rates and remarkable deformation characteristics. A variety of different actuator types can be made with PVC gels because their deformation via anodophilic creep is highly customizable by alteration of the electrode configuration, applied electric field, surface microstructure, and plasticizer content. This level of customization is not typically possible with other electroactive polymer actuators. Several attempts have been made to model PVC gel anodophilic creep actuation. Most of these have been limited in scope to particular actuator types and are phenomenological models. An accurate predictive model is necessary for the implementation and control of these actuators in the field of soft robotics, and this can be better achieved through the use of a physics-based electromechanical model.
In this paper the underlying mechanisms for PVC gel actuation are discussed, and simulation results are shown. We present our finite element model which seeks to move towards a more general model for PVC gels derived from first principles. This electromechanical model is based on the Maxwell stress that is developed within the PVC gel along the anode when an electric field is applied. COMSOL Multiphysics modeling software is utilized for the simulation of PVC gel deformation when exposed to an electric potential. In addition, an experimental study of PVC gels was conducted to verify the model for mesh-type contraction actuators, and the simulated results provide context and support for the underlying mechanisms discussed.
期刊介绍:
This international journal publishes both theoretical and application-oriented papers on various aspects of mechatronic systems, modelling, design, conventional and intelligent control, and intelligent systems. Application areas of mechatronics may include robotics, transportation, energy systems, manufacturing, sensors, actuators, and automation. Techniques of artificial intelligence may include soft computing (fuzzy logic, neural networks, genetic algorithms/evolutionary computing, probabilistic methods, etc.). Techniques may cover frequency and time domains, linear and nonlinear systems, and deterministic and stochastic processes. Hybrid techniques of mechatronics that combine conventional and intelligent methods are also included. First published in 1972, this journal originated with an emphasis on conventional control systems and computer-based applications. Subsequently, with rapid advances in the field and in view of the widespread interest and application of soft computing in control systems, this latter aspect was integrated into the journal. Now the area of mechatronics is included as the main focus. A unique feature of the journal is its pioneering role in bridging the gap between conventional systems and intelligent systems, with an equal emphasis on theory and practical applications, including system modelling, design and instrumentation. It appears four times per year.