n - noether偏广义幂级数环

N. Mohamed, R. Salem, Ramy Abdel-Khaleq
{"title":"n - noether偏广义幂级数环","authors":"N. Mohamed, R. Salem, Ramy Abdel-Khaleq","doi":"10.21608/aunj.2022.154297.1032","DOIUrl":null,"url":null,"abstract":"In this article, denotes a ring with identity (not necessarily to be commutative). A. Kaidi and E. Sanchez [1] introduced a new class of rings called endo-Noetherian rings as a generalization of Noetherian rings which was identified by Emmy Noether in 1921 [2] and the name Noetherian is in her honor. Also, the endo-Noetherian property is a generalization of the iso-Noetherian property (see Definition 3). A left -module is called endo-Noetherian if any ascending chain of endomorphic kernels Ker ( ) ⊆ Ker ( ) ⊆ ..., stabilizes, where ∈ End ( ) for all , i.e., there exists uch that","PeriodicalId":8568,"journal":{"name":"Assiut University Journal of Multidisciplinary Scientific Research","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Endo-Noetherian Skew Generalized Power Series Rings\",\"authors\":\"N. Mohamed, R. Salem, Ramy Abdel-Khaleq\",\"doi\":\"10.21608/aunj.2022.154297.1032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, denotes a ring with identity (not necessarily to be commutative). A. Kaidi and E. Sanchez [1] introduced a new class of rings called endo-Noetherian rings as a generalization of Noetherian rings which was identified by Emmy Noether in 1921 [2] and the name Noetherian is in her honor. Also, the endo-Noetherian property is a generalization of the iso-Noetherian property (see Definition 3). A left -module is called endo-Noetherian if any ascending chain of endomorphic kernels Ker ( ) ⊆ Ker ( ) ⊆ ..., stabilizes, where ∈ End ( ) for all , i.e., there exists uch that\",\"PeriodicalId\":8568,\"journal\":{\"name\":\"Assiut University Journal of Multidisciplinary Scientific Research\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Assiut University Journal of Multidisciplinary Scientific Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21608/aunj.2022.154297.1032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Assiut University Journal of Multidisciplinary Scientific Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21608/aunj.2022.154297.1032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,表示具有恒等的环(不一定是可交换的)。a . Kaidi和E. Sanchez[1]引入了一种新的环,称为endo-Noetherian环,作为Emmy Noether在1921年发现的Noetherian环的推广[2],Noetherian的命名是为了纪念她。此外,恩-诺etherian性质是对等诺etherian性质的推广(见定义3)。如果存在自同态核Ker()≥≥的上链,则左模称为恩-诺etherian。,稳定,其中∈End()对于所有,即存在使
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Endo-Noetherian Skew Generalized Power Series Rings
In this article, denotes a ring with identity (not necessarily to be commutative). A. Kaidi and E. Sanchez [1] introduced a new class of rings called endo-Noetherian rings as a generalization of Noetherian rings which was identified by Emmy Noether in 1921 [2] and the name Noetherian is in her honor. Also, the endo-Noetherian property is a generalization of the iso-Noetherian property (see Definition 3). A left -module is called endo-Noetherian if any ascending chain of endomorphic kernels Ker ( ) ⊆ Ker ( ) ⊆ ..., stabilizes, where ∈ End ( ) for all , i.e., there exists uch that
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信