一种用于组合实现多模电路的自动工具流

Brahim Al Farisi, Karel Bruneel, João MP Cardoso, D. Stroobandt
{"title":"一种用于组合实现多模电路的自动工具流","authors":"Brahim Al Farisi, Karel Bruneel, João MP Cardoso, D. Stroobandt","doi":"10.7873/DATE.2013.174","DOIUrl":null,"url":null,"abstract":"A multi-mode circuit implements the functionality of a limited number of circuits, called modes, of which at any given time only one needs to be realised. Using run-time reconfiguration of an FPGA, all the modes can be implemented on the same reconfigurable region, requiring only an area that can contain the biggest mode. Typically, conventional run-time reconfiguration techniques generate a configuration for every mode separately. To switch between modes the complete reconfigurable region is rewritten, which often leads to very long reconfiguration times. In this paper we present a novel, fully automated tool flow that exploits similarities between the modes and uses Dynamic Circuit Specialization to drastically reduce reconfiguration time. Experimental results show that the number of bits that is rewritten in the configuration memory reduces with a factor from 4.6× to 5.1× without significant performance penalties.","PeriodicalId":6310,"journal":{"name":"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"43 1","pages":"821-826"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"An automatic tool flow for the combined implementation of multi-mode circuits\",\"authors\":\"Brahim Al Farisi, Karel Bruneel, João MP Cardoso, D. Stroobandt\",\"doi\":\"10.7873/DATE.2013.174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A multi-mode circuit implements the functionality of a limited number of circuits, called modes, of which at any given time only one needs to be realised. Using run-time reconfiguration of an FPGA, all the modes can be implemented on the same reconfigurable region, requiring only an area that can contain the biggest mode. Typically, conventional run-time reconfiguration techniques generate a configuration for every mode separately. To switch between modes the complete reconfigurable region is rewritten, which often leads to very long reconfiguration times. In this paper we present a novel, fully automated tool flow that exploits similarities between the modes and uses Dynamic Circuit Specialization to drastically reduce reconfiguration time. Experimental results show that the number of bits that is rewritten in the configuration memory reduces with a factor from 4.6× to 5.1× without significant performance penalties.\",\"PeriodicalId\":6310,\"journal\":{\"name\":\"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"volume\":\"43 1\",\"pages\":\"821-826\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7873/DATE.2013.174\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7873/DATE.2013.174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

多模电路实现了有限数量的电路的功能,称为模式,在任何给定的时间只需要实现其中一个。使用FPGA的运行时重新配置,所有模式都可以在相同的可重新配置区域上实现,只需要一个可以包含最大模式的区域。通常,传统的运行时重新配置技术分别为每个模式生成配置。为了在模式之间切换,需要重写整个可重构区域,这通常会导致非常长的重新配置时间。在本文中,我们提出了一种新颖的、完全自动化的工具流,它利用了模式之间的相似性,并使用动态电路专门化来大幅减少重新配置时间。实验结果表明,在配置内存中重写的比特数从4.6倍减少到5.1倍,而没有明显的性能损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An automatic tool flow for the combined implementation of multi-mode circuits
A multi-mode circuit implements the functionality of a limited number of circuits, called modes, of which at any given time only one needs to be realised. Using run-time reconfiguration of an FPGA, all the modes can be implemented on the same reconfigurable region, requiring only an area that can contain the biggest mode. Typically, conventional run-time reconfiguration techniques generate a configuration for every mode separately. To switch between modes the complete reconfigurable region is rewritten, which often leads to very long reconfiguration times. In this paper we present a novel, fully automated tool flow that exploits similarities between the modes and uses Dynamic Circuit Specialization to drastically reduce reconfiguration time. Experimental results show that the number of bits that is rewritten in the configuration memory reduces with a factor from 4.6× to 5.1× without significant performance penalties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信