环上的对称广义逆(α, 1)-双推导

IF 0.2 Q4 MATHEMATICS
Sk. Haseena, C. J. Reddy
{"title":"环上的对称广义逆(α, 1)-双推导","authors":"Sk. Haseena, C. J. Reddy","doi":"10.17654/0972555522033","DOIUrl":null,"url":null,"abstract":"Let R be a ring and α be an endomorphism of R. Then, we introduce the notions of generalized reverse (α, 1)-derivation and that of symmetric generalized reverse (α, 1)-biderivation. It is shown that if a semiprime ring admits a generalized reverse (α, 1)-derivation with an associated reverse (α, 1)-derivation d, then d maps R into Z(R) and also that if a non-commutative prime ring admits a generalized reverse (α, 1)-derivation F with an associated reverse (α, 1)-derivation d, then F is reverse left α-multiplier on R. Analogous results have been proved for a symmetric generalized reverse (α, 1)-biderivation.","PeriodicalId":43248,"journal":{"name":"JP Journal of Algebra Number Theory and Applications","volume":"34 1","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2022-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SYMMETRIC GENERALIZED REVERSE (α, 1)-BIDERIVATIONS IN RINGS\",\"authors\":\"Sk. Haseena, C. J. Reddy\",\"doi\":\"10.17654/0972555522033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let R be a ring and α be an endomorphism of R. Then, we introduce the notions of generalized reverse (α, 1)-derivation and that of symmetric generalized reverse (α, 1)-biderivation. It is shown that if a semiprime ring admits a generalized reverse (α, 1)-derivation with an associated reverse (α, 1)-derivation d, then d maps R into Z(R) and also that if a non-commutative prime ring admits a generalized reverse (α, 1)-derivation F with an associated reverse (α, 1)-derivation d, then F is reverse left α-multiplier on R. Analogous results have been proved for a symmetric generalized reverse (α, 1)-biderivation.\",\"PeriodicalId\":43248,\"journal\":{\"name\":\"JP Journal of Algebra Number Theory and Applications\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2022-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JP Journal of Algebra Number Theory and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17654/0972555522033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JP Journal of Algebra Number Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17654/0972555522033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设R是一个环,α是R的自同态,然后引入广义逆(α, 1)-求导和对称广义逆(α, 1)-双求导的概念。结果表明,如果一个半素环承认广义逆(α,1)推导有一个关联的反向(α,1)推导d, d R映射到Z (R)和也,如果non-commutative '环承认广义逆(α,1)推导F有一个关联的反向(α,1)推导d,然后向左F是反向α乘数R .类似的结果已经证明了对称广义逆-biderivation(α,1)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SYMMETRIC GENERALIZED REVERSE (α, 1)-BIDERIVATIONS IN RINGS
Let R be a ring and α be an endomorphism of R. Then, we introduce the notions of generalized reverse (α, 1)-derivation and that of symmetric generalized reverse (α, 1)-biderivation. It is shown that if a semiprime ring admits a generalized reverse (α, 1)-derivation with an associated reverse (α, 1)-derivation d, then d maps R into Z(R) and also that if a non-commutative prime ring admits a generalized reverse (α, 1)-derivation F with an associated reverse (α, 1)-derivation d, then F is reverse left α-multiplier on R. Analogous results have been proved for a symmetric generalized reverse (α, 1)-biderivation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
32
期刊介绍: The JP Journal of Algebra, Number Theory and Applications is a peer-reviewed international journal. Original research papers theoretical, computational or applied, in nature, in any branch of Algebra and Number Theory are considered by the JPANTA. Together with the core topics in these fields along with their interplay, the journal promotes contributions in Diophantine equations, Representation theory, and Cryptography. Realising the need of wide range of information for any emerging area of potential research, the journal encourages the submission of related survey articles as well.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信