重新讨论了蒙日-安培型方程的诺伊曼问题。

Q4 Mathematics
N. Trudinger, F. Jiang
{"title":"重新讨论了蒙日-安培型方程的诺伊曼问题。","authors":"N. Trudinger, F. Jiang","doi":"10.53733/176","DOIUrl":null,"url":null,"abstract":"This paper concerns  a priori second order derivative estimates of solutions of the Neumann problem for the Monge-Amp\\`ere type equations in bounded domains in n dimensional Euclidean space. We first establish a double normal second order derivative estimate on the boundary under an appropriate notion of domain convexity. Then, assuming a barrier condition for the linearized operator, we provide a complete proof of the global second derivative estimate for elliptic solutions, as previously studied in our earlier work. We also consider extensions to the degenerate elliptic case, in both the regular and strictly regular matrix cases.","PeriodicalId":30137,"journal":{"name":"New Zealand Journal of Mathematics","volume":"321 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Neumann problem for Monge-Ampere type equations revisited.\",\"authors\":\"N. Trudinger, F. Jiang\",\"doi\":\"10.53733/176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper concerns  a priori second order derivative estimates of solutions of the Neumann problem for the Monge-Amp\\\\`ere type equations in bounded domains in n dimensional Euclidean space. We first establish a double normal second order derivative estimate on the boundary under an appropriate notion of domain convexity. Then, assuming a barrier condition for the linearized operator, we provide a complete proof of the global second derivative estimate for elliptic solutions, as previously studied in our earlier work. We also consider extensions to the degenerate elliptic case, in both the regular and strictly regular matrix cases.\",\"PeriodicalId\":30137,\"journal\":{\"name\":\"New Zealand Journal of Mathematics\",\"volume\":\"321 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Zealand Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53733/176\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Zealand Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53733/176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了n维欧几里德空间中有界区域上Monge-Amp ' ere型方程的Neumann问题解的先验二阶导数估计。我们首先在适当的域凸性概念下,在边界上建立了一个双正规二阶导数估计。然后,假设线性化算子的势垒条件,我们提供了椭圆解的全局二阶导数估计的完整证明,正如我们之前的工作所研究的那样。在正则矩阵和严格正则矩阵两种情况下,我们也考虑了退化椭圆情况的扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neumann problem for Monge-Ampere type equations revisited.
This paper concerns  a priori second order derivative estimates of solutions of the Neumann problem for the Monge-Amp\`ere type equations in bounded domains in n dimensional Euclidean space. We first establish a double normal second order derivative estimate on the boundary under an appropriate notion of domain convexity. Then, assuming a barrier condition for the linearized operator, we provide a complete proof of the global second derivative estimate for elliptic solutions, as previously studied in our earlier work. We also consider extensions to the degenerate elliptic case, in both the regular and strictly regular matrix cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
New Zealand Journal of Mathematics
New Zealand Journal of Mathematics Mathematics-Algebra and Number Theory
CiteScore
1.10
自引率
0.00%
发文量
11
审稿时长
50 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信