关于单位半素环上的导数的一个结果

Pub Date : 2021-06-24 DOI:10.3336/gm.56.1.07
I. Kosi-Ulbl, Nejc Širovnik, J. Vukman, Global Gaming Solutions Partner WinSystems
{"title":"关于单位半素环上的导数的一个结果","authors":"I. Kosi-Ulbl, Nejc Širovnik, J. Vukman, Global Gaming Solutions Partner WinSystems","doi":"10.3336/gm.56.1.07","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to prove the following result. Let n≥3 be some fixed integer and let R be a (n+1)!2n-2-torsion free semiprime unital ring. Suppose there exists an additive mapping D: R→ R satisfying the relation for all x ∈ R. In this case D is a derivation. The history of this result goes back to a classical result of Herstein, which states that any Jordan derivation on a 2-torsion free prime ring is a derivation.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A result related to derivations on unital semiprime rings\",\"authors\":\"I. Kosi-Ulbl, Nejc Širovnik, J. Vukman, Global Gaming Solutions Partner WinSystems\",\"doi\":\"10.3336/gm.56.1.07\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this paper is to prove the following result. Let n≥3 be some fixed integer and let R be a (n+1)!2n-2-torsion free semiprime unital ring. Suppose there exists an additive mapping D: R→ R satisfying the relation for all x ∈ R. In this case D is a derivation. The history of this result goes back to a classical result of Herstein, which states that any Jordan derivation on a 2-torsion free prime ring is a derivation.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3336/gm.56.1.07\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3336/gm.56.1.07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文的目的是证明以下结果。设n≥3为固定整数,R为a (n+1)!2n-2-无扭半素一元环。假设存在一个加性映射D: R→R满足对所有x∈R的关系,此时D是一个导数。这个结果的历史可以追溯到赫斯坦的一个经典结果,该结果表明,在2-无扭转素数环上的任何Jordan导数都是一个导数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A result related to derivations on unital semiprime rings
The purpose of this paper is to prove the following result. Let n≥3 be some fixed integer and let R be a (n+1)!2n-2-torsion free semiprime unital ring. Suppose there exists an additive mapping D: R→ R satisfying the relation for all x ∈ R. In this case D is a derivation. The history of this result goes back to a classical result of Herstein, which states that any Jordan derivation on a 2-torsion free prime ring is a derivation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信