混合fdm稳定lanczos型求解pde问题

IF 0.4 Q4 MATHEMATICS
Rehana Thalib, Maharani A. Bakar, See G. BIN, Lee Y. YEE, Yong S. XIA, N. Mohamed
{"title":"混合fdm稳定lanczos型求解pde问题","authors":"Rehana Thalib, Maharani A. Bakar, See G. BIN, Lee Y. YEE, Yong S. XIA, N. Mohamed","doi":"10.46754/jmsi.2021.12.002","DOIUrl":null,"url":null,"abstract":"This study investigates the combination of finite difference method (FDM) and the stabilized Lanczos method to solve various partial differential equation (PDE) problems. This combination is wrapped in the algorithms called hybrid FDMRMEIEMLA and hybrid FDM-RLMinRes. FDM is the discretization method which converts the PDEs into algebraic formula, whereas both RMEIEMLA and RLMinRes are known as the stabilized Lanczos methods in solving largescale problems of SLEs. Their hybrids enable us to find the solutions of PDE problems accurately. There are at least three types of PDEs solved in this study, namely Helmholtz, wave, and heat equations. The convergence rate of our methods computed using the residual norms || b - Axk ||. Numerical results showed that our proposed methods performed well in solving the various PDEs with small residual norms.","PeriodicalId":43670,"journal":{"name":"Iranian Journal of Mathematical Sciences and Informatics","volume":"434 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HYBRID FDM-STABILIZED LANCZOS-TYPE IN SOLVING PDE PROBLEMS\",\"authors\":\"Rehana Thalib, Maharani A. Bakar, See G. BIN, Lee Y. YEE, Yong S. XIA, N. Mohamed\",\"doi\":\"10.46754/jmsi.2021.12.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates the combination of finite difference method (FDM) and the stabilized Lanczos method to solve various partial differential equation (PDE) problems. This combination is wrapped in the algorithms called hybrid FDMRMEIEMLA and hybrid FDM-RLMinRes. FDM is the discretization method which converts the PDEs into algebraic formula, whereas both RMEIEMLA and RLMinRes are known as the stabilized Lanczos methods in solving largescale problems of SLEs. Their hybrids enable us to find the solutions of PDE problems accurately. There are at least three types of PDEs solved in this study, namely Helmholtz, wave, and heat equations. The convergence rate of our methods computed using the residual norms || b - Axk ||. Numerical results showed that our proposed methods performed well in solving the various PDEs with small residual norms.\",\"PeriodicalId\":43670,\"journal\":{\"name\":\"Iranian Journal of Mathematical Sciences and Informatics\",\"volume\":\"434 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Mathematical Sciences and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46754/jmsi.2021.12.002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Mathematical Sciences and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46754/jmsi.2021.12.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了有限差分法与稳定Lanczos法的结合,求解各种偏微分方程问题。这种组合被封装在称为混合FDMRMEIEMLA和混合FDM-RLMinRes的算法中。FDM是将偏微分方程转化为代数公式的离散化方法,而RMEIEMLA和RLMinRes都被称为求解SLEs大规模问题的稳定Lanczos方法。它们的混合使我们能够准确地找到PDE问题的解决方案。本研究求解的偏微分方程至少有三种类型,即亥姆霍兹方程、波动方程和热方程。用残差范数b - Axk计算了方法的收敛速度。数值结果表明,所提出的方法能够较好地求解残差小范数的各种偏微分方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HYBRID FDM-STABILIZED LANCZOS-TYPE IN SOLVING PDE PROBLEMS
This study investigates the combination of finite difference method (FDM) and the stabilized Lanczos method to solve various partial differential equation (PDE) problems. This combination is wrapped in the algorithms called hybrid FDMRMEIEMLA and hybrid FDM-RLMinRes. FDM is the discretization method which converts the PDEs into algebraic formula, whereas both RMEIEMLA and RLMinRes are known as the stabilized Lanczos methods in solving largescale problems of SLEs. Their hybrids enable us to find the solutions of PDE problems accurately. There are at least three types of PDEs solved in this study, namely Helmholtz, wave, and heat equations. The convergence rate of our methods computed using the residual norms || b - Axk ||. Numerical results showed that our proposed methods performed well in solving the various PDEs with small residual norms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
20
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信