基于条件生成对抗网络的PET/MR衰减校正自动生成衰减图

Emily Anaya, C. Levin
{"title":"基于条件生成对抗网络的PET/MR衰减校正自动生成衰减图","authors":"Emily Anaya, C. Levin","doi":"10.1109/NSS/MIC42677.2020.9507903","DOIUrl":null,"url":null,"abstract":"Attenuation correction is an important correction for quantitative PET image reconstruction. Current PET/MR attenuation correction methods involve segmenting MR images acquired with zero-time echo (ZTE) or Dixon sequences and assigning known attenuation coefficients to different tissues. This work builds upon our previous work where we explore a novel deep learning method of attenuation map (µ-map) generation using a conditional generative adversarial network (cGAN) that allows for continuous attenuation coefficients [1]. We develop the use of a cGAN network to directly convert MR images to CT images (pseudo CT) through registered training data. A straightforward bilinear conversion can be applied to the pseudo CT images to obtain attenuation maps at 511keV for PET attenuation correction of the head and neck region, including brain. The overall average MAE of the pseudo CT compared to the real CT test images was found to be 88.2 ± 32.7 HU. Future work includes applying the correction on PET data and comparing the reconstructed PET image with CT-based attenuation correction at 511keV as the gold standard.","PeriodicalId":6760,"journal":{"name":"2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)","volume":"53 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Automatic Generation of MR-based Attenuation Map using Conditional Generative Adversarial Network for Attenuation Correction in PET/MR\",\"authors\":\"Emily Anaya, C. Levin\",\"doi\":\"10.1109/NSS/MIC42677.2020.9507903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Attenuation correction is an important correction for quantitative PET image reconstruction. Current PET/MR attenuation correction methods involve segmenting MR images acquired with zero-time echo (ZTE) or Dixon sequences and assigning known attenuation coefficients to different tissues. This work builds upon our previous work where we explore a novel deep learning method of attenuation map (µ-map) generation using a conditional generative adversarial network (cGAN) that allows for continuous attenuation coefficients [1]. We develop the use of a cGAN network to directly convert MR images to CT images (pseudo CT) through registered training data. A straightforward bilinear conversion can be applied to the pseudo CT images to obtain attenuation maps at 511keV for PET attenuation correction of the head and neck region, including brain. The overall average MAE of the pseudo CT compared to the real CT test images was found to be 88.2 ± 32.7 HU. Future work includes applying the correction on PET data and comparing the reconstructed PET image with CT-based attenuation correction at 511keV as the gold standard.\",\"PeriodicalId\":6760,\"journal\":{\"name\":\"2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)\",\"volume\":\"53 1\",\"pages\":\"1-3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NSS/MIC42677.2020.9507903\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSS/MIC42677.2020.9507903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

衰减校正是定量PET图像重建的重要校正方法。目前的PET/MR衰减校正方法包括对零时间回波(ZTE)或Dixon序列获得的MR图像进行分割,并将已知的衰减系数分配给不同的组织。这项工作建立在我们之前的工作基础上,我们探索了一种新的深度学习方法,使用允许连续衰减系数的条件生成对抗网络(cGAN)生成衰减图(μ -map)[1]。我们开发了使用cGAN网络,通过注册的训练数据直接将MR图像转换为CT图像(伪CT)。可以对伪CT图像进行直接的双线性转换,得到511keV下的衰减图,用于头颈部(包括大脑)的PET衰减校正。伪CT与真实CT检测图像的总体平均MAE为88.2±32.7 HU。未来的工作包括对PET数据进行校正,并将重建的PET图像与基于ct的511keV衰减校正作为金标准进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Generation of MR-based Attenuation Map using Conditional Generative Adversarial Network for Attenuation Correction in PET/MR
Attenuation correction is an important correction for quantitative PET image reconstruction. Current PET/MR attenuation correction methods involve segmenting MR images acquired with zero-time echo (ZTE) or Dixon sequences and assigning known attenuation coefficients to different tissues. This work builds upon our previous work where we explore a novel deep learning method of attenuation map (µ-map) generation using a conditional generative adversarial network (cGAN) that allows for continuous attenuation coefficients [1]. We develop the use of a cGAN network to directly convert MR images to CT images (pseudo CT) through registered training data. A straightforward bilinear conversion can be applied to the pseudo CT images to obtain attenuation maps at 511keV for PET attenuation correction of the head and neck region, including brain. The overall average MAE of the pseudo CT compared to the real CT test images was found to be 88.2 ± 32.7 HU. Future work includes applying the correction on PET data and comparing the reconstructed PET image with CT-based attenuation correction at 511keV as the gold standard.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信