生物仿制药的设计克服了炎症神经调节的局限性

L. Ulloa
{"title":"生物仿制药的设计克服了炎症神经调节的局限性","authors":"L. Ulloa","doi":"10.4172/2155-952X.C1.057","DOIUrl":null,"url":null,"abstract":"S glucose, cholesterol, triglyceride and HbA1C monitoring are all valuable tools in the health management of the aging population especially given the increase in diabetes and cardiovascular diseases. Even for glucose monitoring, the challenges in obtaining sufficiently accurate and reliable measurements are so significant. None of them meet the even more stringent requirement of ISO 2012 and FDA. Because inaccurate systems bear the risk of false therapeutic decisions, rising health care costs, there is an urgent compelling need for significantly enhanced BG monitoring systems for PC applications. POC tests for other biomedically important analytes are generally even less accurate. The overall goal of the research in our laboratory and laboratories of our collaborators at Stanford, UC Berkeley, MIT and Rice is to develop new sensor platforms that will provide increased sensitivity and accuracy in point of care situations. Graphene-based platforms decorated by a probe protein enhance the sensitivity of pristine single layer grapheme multi-fold and offers a very accurate determination of critical analytes in the blood and other body fluids including saliva. The proposed system uses advanced graphene, Boron-doped graphene and carbon-nanotube-based sensors to transduce enzymatic binding into electrical signals that can be read and processed by a stand-alone system or even a cell-phone. These new biosensor chips will be housed in a plastic microfluidic system for sample acquisition, preparation and distribution to four separate biosensing chips. This approach will improve accuracy because it reduces operator errors, calibration problems and strip-to-strip variability, while increasing sensor sensitivity/specificity with the option to use redundant sensors for improved statistical confidence.","PeriodicalId":15156,"journal":{"name":"Journal of biotechnology & biomaterials","volume":"52 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of biosimilars to overcome the limitations of neuromodulation of the inflammation\",\"authors\":\"L. Ulloa\",\"doi\":\"10.4172/2155-952X.C1.057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"S glucose, cholesterol, triglyceride and HbA1C monitoring are all valuable tools in the health management of the aging population especially given the increase in diabetes and cardiovascular diseases. Even for glucose monitoring, the challenges in obtaining sufficiently accurate and reliable measurements are so significant. None of them meet the even more stringent requirement of ISO 2012 and FDA. Because inaccurate systems bear the risk of false therapeutic decisions, rising health care costs, there is an urgent compelling need for significantly enhanced BG monitoring systems for PC applications. POC tests for other biomedically important analytes are generally even less accurate. The overall goal of the research in our laboratory and laboratories of our collaborators at Stanford, UC Berkeley, MIT and Rice is to develop new sensor platforms that will provide increased sensitivity and accuracy in point of care situations. Graphene-based platforms decorated by a probe protein enhance the sensitivity of pristine single layer grapheme multi-fold and offers a very accurate determination of critical analytes in the blood and other body fluids including saliva. The proposed system uses advanced graphene, Boron-doped graphene and carbon-nanotube-based sensors to transduce enzymatic binding into electrical signals that can be read and processed by a stand-alone system or even a cell-phone. These new biosensor chips will be housed in a plastic microfluidic system for sample acquisition, preparation and distribution to four separate biosensing chips. This approach will improve accuracy because it reduces operator errors, calibration problems and strip-to-strip variability, while increasing sensor sensitivity/specificity with the option to use redundant sensors for improved statistical confidence.\",\"PeriodicalId\":15156,\"journal\":{\"name\":\"Journal of biotechnology & biomaterials\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biotechnology & biomaterials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2155-952X.C1.057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biotechnology & biomaterials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2155-952X.C1.057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design of biosimilars to overcome the limitations of neuromodulation of the inflammation
S glucose, cholesterol, triglyceride and HbA1C monitoring are all valuable tools in the health management of the aging population especially given the increase in diabetes and cardiovascular diseases. Even for glucose monitoring, the challenges in obtaining sufficiently accurate and reliable measurements are so significant. None of them meet the even more stringent requirement of ISO 2012 and FDA. Because inaccurate systems bear the risk of false therapeutic decisions, rising health care costs, there is an urgent compelling need for significantly enhanced BG monitoring systems for PC applications. POC tests for other biomedically important analytes are generally even less accurate. The overall goal of the research in our laboratory and laboratories of our collaborators at Stanford, UC Berkeley, MIT and Rice is to develop new sensor platforms that will provide increased sensitivity and accuracy in point of care situations. Graphene-based platforms decorated by a probe protein enhance the sensitivity of pristine single layer grapheme multi-fold and offers a very accurate determination of critical analytes in the blood and other body fluids including saliva. The proposed system uses advanced graphene, Boron-doped graphene and carbon-nanotube-based sensors to transduce enzymatic binding into electrical signals that can be read and processed by a stand-alone system or even a cell-phone. These new biosensor chips will be housed in a plastic microfluidic system for sample acquisition, preparation and distribution to four separate biosensing chips. This approach will improve accuracy because it reduces operator errors, calibration problems and strip-to-strip variability, while increasing sensor sensitivity/specificity with the option to use redundant sensors for improved statistical confidence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信