对开放量子材料数据库(OQMD)中100万种化合物的思考

IF 2.9 4区 物理与天体物理 Q2 OPTICS
Jiahong Shen, Sean D Griesemer, Abhijith M. Gopakumar, B. Baldassarri, J. Saal, Muratahan Aykol, Vinayakaprasanna N. Hegde, C. Wolverton
{"title":"对开放量子材料数据库(OQMD)中100万种化合物的思考","authors":"Jiahong Shen, Sean D Griesemer, Abhijith M. Gopakumar, B. Baldassarri, J. Saal, Muratahan Aykol, Vinayakaprasanna N. Hegde, C. Wolverton","doi":"10.1088/2515-7639/ac7ba9","DOIUrl":null,"url":null,"abstract":"Density functional theory (DFT) has been widely applied in modern materials discovery and many materials databases, including the open quantum materials database (OQMD), contain large collections of calculated DFT properties of experimentally known crystal structures and hypothetical predicted compounds. Since the beginning of the OQMD in late 2010, over one million compounds have now been calculated and stored in the database, which is constantly used by worldwide researchers in advancing materials studies. The growth of the OQMD depends on project-based high-throughput DFT calculations, including structure-based projects, property-based projects, and most recently, machine-learning-based projects. Another major goal of the OQMD is to ensure the openness of its materials data to the public and the OQMD developers are constantly working with other materials databases to reach a universal querying protocol in support of the FAIR data principles.","PeriodicalId":16520,"journal":{"name":"Journal of Nonlinear Optical Physics & Materials","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2022-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Reflections on one million compounds in the open quantum materials database (OQMD)\",\"authors\":\"Jiahong Shen, Sean D Griesemer, Abhijith M. Gopakumar, B. Baldassarri, J. Saal, Muratahan Aykol, Vinayakaprasanna N. Hegde, C. Wolverton\",\"doi\":\"10.1088/2515-7639/ac7ba9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Density functional theory (DFT) has been widely applied in modern materials discovery and many materials databases, including the open quantum materials database (OQMD), contain large collections of calculated DFT properties of experimentally known crystal structures and hypothetical predicted compounds. Since the beginning of the OQMD in late 2010, over one million compounds have now been calculated and stored in the database, which is constantly used by worldwide researchers in advancing materials studies. The growth of the OQMD depends on project-based high-throughput DFT calculations, including structure-based projects, property-based projects, and most recently, machine-learning-based projects. Another major goal of the OQMD is to ensure the openness of its materials data to the public and the OQMD developers are constantly working with other materials databases to reach a universal querying protocol in support of the FAIR data principles.\",\"PeriodicalId\":16520,\"journal\":{\"name\":\"Journal of Nonlinear Optical Physics & Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2022-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nonlinear Optical Physics & Materials\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/2515-7639/ac7ba9\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Optical Physics & Materials","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2515-7639/ac7ba9","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 9

摘要

密度泛函理论(DFT)在现代材料发现中得到了广泛的应用,许多材料数据库,包括开放量子材料数据库(OQMD),包含大量实验已知晶体结构和假设预测化合物的计算DFT性质。自2010年底OQMD启动以来,超过100万种化合物已被计算并存储在数据库中,该数据库不断被世界各地的研究人员用于推进材料研究。OQMD的增长依赖于基于项目的高通量DFT计算,包括基于结构的项目、基于属性的项目,以及最近的基于机器学习的项目。OQMD的另一个主要目标是确保其材料数据向公众开放,OQMD开发人员正在不断地与其他材料数据库合作,以达成支持FAIR数据原则的通用查询协议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reflections on one million compounds in the open quantum materials database (OQMD)
Density functional theory (DFT) has been widely applied in modern materials discovery and many materials databases, including the open quantum materials database (OQMD), contain large collections of calculated DFT properties of experimentally known crystal structures and hypothetical predicted compounds. Since the beginning of the OQMD in late 2010, over one million compounds have now been calculated and stored in the database, which is constantly used by worldwide researchers in advancing materials studies. The growth of the OQMD depends on project-based high-throughput DFT calculations, including structure-based projects, property-based projects, and most recently, machine-learning-based projects. Another major goal of the OQMD is to ensure the openness of its materials data to the public and the OQMD developers are constantly working with other materials databases to reach a universal querying protocol in support of the FAIR data principles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
48.10%
发文量
53
审稿时长
3 months
期刊介绍: This journal is devoted to the rapidly advancing research and development in the field of nonlinear interactions of light with matter. Topics of interest include, but are not limited to, nonlinear optical materials, metamaterials and plasmonics, nano-photonic structures, stimulated scatterings, harmonic generations, wave mixing, real time holography, guided waves and solitons, bistabilities, instabilities and nonlinear dynamics, and their applications in laser and coherent lightwave amplification, guiding, switching, modulation, communication and information processing. Original papers, comprehensive reviews and rapid communications reporting original theories and observations are sought for in these and related areas. This journal will also publish proceedings of important international meetings and workshops. It is intended for graduate students, scientists and researchers in academic, industrial and government research institutions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信