{"title":"各向同性协方差函数的非参数估计","authors":"Yiming Wang, Sujit K. Ghosh","doi":"10.1080/10485252.2022.2146111","DOIUrl":null,"url":null,"abstract":"A nonparametric model using a sequence of Bernstein polynomials is constructed to approximate arbitrary isotropic covariance functions valid in and related approximation properties are investigated using the popular norm and norms. A computationally efficient sieve maximum likelihood (sML) estimation is then developed to nonparametrically estimate the unknown isotropic covariance function valid in . Consistency of the proposed sieve ML estimator is established under increasing domain regime. The proposed methodology is compared numerically with couple of existing nonparametric as well as with commonly used parametric methods. Numerical results based on simulated data show that our approach outperforms the parametric methods in reducing bias due to model misspecification and also the nonparametric methods in terms of having significantly lower values of expected and norms. Application to precipitation data is illustrated to showcase a real case study. Additional technical details and numerical illustrations are also made available.","PeriodicalId":50112,"journal":{"name":"Journal of Nonparametric Statistics","volume":"19 1","pages":"198 - 237"},"PeriodicalIF":0.8000,"publicationDate":"2022-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonparametric estimation of isotropic covariance function\",\"authors\":\"Yiming Wang, Sujit K. Ghosh\",\"doi\":\"10.1080/10485252.2022.2146111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A nonparametric model using a sequence of Bernstein polynomials is constructed to approximate arbitrary isotropic covariance functions valid in and related approximation properties are investigated using the popular norm and norms. A computationally efficient sieve maximum likelihood (sML) estimation is then developed to nonparametrically estimate the unknown isotropic covariance function valid in . Consistency of the proposed sieve ML estimator is established under increasing domain regime. The proposed methodology is compared numerically with couple of existing nonparametric as well as with commonly used parametric methods. Numerical results based on simulated data show that our approach outperforms the parametric methods in reducing bias due to model misspecification and also the nonparametric methods in terms of having significantly lower values of expected and norms. Application to precipitation data is illustrated to showcase a real case study. Additional technical details and numerical illustrations are also made available.\",\"PeriodicalId\":50112,\"journal\":{\"name\":\"Journal of Nonparametric Statistics\",\"volume\":\"19 1\",\"pages\":\"198 - 237\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nonparametric Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/10485252.2022.2146111\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonparametric Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/10485252.2022.2146111","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Nonparametric estimation of isotropic covariance function
A nonparametric model using a sequence of Bernstein polynomials is constructed to approximate arbitrary isotropic covariance functions valid in and related approximation properties are investigated using the popular norm and norms. A computationally efficient sieve maximum likelihood (sML) estimation is then developed to nonparametrically estimate the unknown isotropic covariance function valid in . Consistency of the proposed sieve ML estimator is established under increasing domain regime. The proposed methodology is compared numerically with couple of existing nonparametric as well as with commonly used parametric methods. Numerical results based on simulated data show that our approach outperforms the parametric methods in reducing bias due to model misspecification and also the nonparametric methods in terms of having significantly lower values of expected and norms. Application to precipitation data is illustrated to showcase a real case study. Additional technical details and numerical illustrations are also made available.
期刊介绍:
Journal of Nonparametric Statistics provides a medium for the publication of research and survey work in nonparametric statistics and related areas. The scope includes, but is not limited to the following topics:
Nonparametric modeling,
Nonparametric function estimation,
Rank and other robust and distribution-free procedures,
Resampling methods,
Lack-of-fit testing,
Multivariate analysis,
Inference with high-dimensional data,
Dimension reduction and variable selection,
Methods for errors in variables, missing, censored, and other incomplete data structures,
Inference of stochastic processes,
Sample surveys,
Time series analysis,
Longitudinal and functional data analysis,
Nonparametric Bayes methods and decision procedures,
Semiparametric models and procedures,
Statistical methods for imaging and tomography,
Statistical inverse problems,
Financial statistics and econometrics,
Bioinformatics and comparative genomics,
Statistical algorithms and machine learning.
Both the theory and applications of nonparametric statistics are covered in the journal. Research applying nonparametric methods to medicine, engineering, technology, science and humanities is welcomed, provided the novelty and quality level are of the highest order.
Authors are encouraged to submit supplementary technical arguments, computer code, data analysed in the paper or any additional information for online publication along with the published paper.