主动控制的压电智能平台低频宽带多向隔振

IF 2.8 4区 工程技术 Q1 ACOUSTICS
Wentao Zou, Ningdong Hu, Xue Yang, H. Hu
{"title":"主动控制的压电智能平台低频宽带多向隔振","authors":"Wentao Zou, Ningdong Hu, Xue Yang, H. Hu","doi":"10.1177/14613484231176127","DOIUrl":null,"url":null,"abstract":"A high-precision equipment is very sensitive to vibration, even micro vibration. How to isolate the low-frequency broadband multidirectional vibration remains a challenge. As the main component of piezoelectric smart vibration isolation model, the piezoelectric stack consists of a piezoelectric actuator, a piezoelectric sensor, and a rubber layer. The numerical results obtained by the finite element method agree well with theoretical solutions. The vibration attenuates rapidly under displacement and velocity feedback control with negative gains. As the control gain decreases, the vibration isolation band is extended to lower frequency. A piezoelectric smart multidirectional vibration isolation platform model is further proposed by inclined installation of two piezoelectric stacks. A spring-like structure is designed to exert a preload pressure on these piezoelectric stacks. After optimization on the control gain, the platform can isolate vibration from 0 to 3000 Hz in multiple directions.","PeriodicalId":56067,"journal":{"name":"Journal of Low Frequency Noise Vibration and Active Control","volume":"9 1","pages":"1451 - 1465"},"PeriodicalIF":2.8000,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Low-frequency broadband multidirectional vibration isolation by piezoelectric smart platform with active control\",\"authors\":\"Wentao Zou, Ningdong Hu, Xue Yang, H. Hu\",\"doi\":\"10.1177/14613484231176127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A high-precision equipment is very sensitive to vibration, even micro vibration. How to isolate the low-frequency broadband multidirectional vibration remains a challenge. As the main component of piezoelectric smart vibration isolation model, the piezoelectric stack consists of a piezoelectric actuator, a piezoelectric sensor, and a rubber layer. The numerical results obtained by the finite element method agree well with theoretical solutions. The vibration attenuates rapidly under displacement and velocity feedback control with negative gains. As the control gain decreases, the vibration isolation band is extended to lower frequency. A piezoelectric smart multidirectional vibration isolation platform model is further proposed by inclined installation of two piezoelectric stacks. A spring-like structure is designed to exert a preload pressure on these piezoelectric stacks. After optimization on the control gain, the platform can isolate vibration from 0 to 3000 Hz in multiple directions.\",\"PeriodicalId\":56067,\"journal\":{\"name\":\"Journal of Low Frequency Noise Vibration and Active Control\",\"volume\":\"9 1\",\"pages\":\"1451 - 1465\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Low Frequency Noise Vibration and Active Control\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/14613484231176127\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Low Frequency Noise Vibration and Active Control","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/14613484231176127","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 1

摘要

高精度设备对振动,甚至是微振动都非常敏感。如何隔离低频宽带多向振动仍然是一个挑战。压电堆是压电智能隔振模型的主要组成部分,由压电致动器、压电传感器和橡胶层组成。有限元计算结果与理论解吻合较好。在负增益的位移和速度反馈控制下,振动衰减迅速。随着控制增益的减小,隔振带向低频延伸。在此基础上,提出了一种压电式智能多向隔振平台模型。设计了一个类似弹簧的结构来对这些压电堆施加预紧压力。对控制增益进行优化后,该平台可在多个方向隔离0 ~ 3000 Hz的振动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low-frequency broadband multidirectional vibration isolation by piezoelectric smart platform with active control
A high-precision equipment is very sensitive to vibration, even micro vibration. How to isolate the low-frequency broadband multidirectional vibration remains a challenge. As the main component of piezoelectric smart vibration isolation model, the piezoelectric stack consists of a piezoelectric actuator, a piezoelectric sensor, and a rubber layer. The numerical results obtained by the finite element method agree well with theoretical solutions. The vibration attenuates rapidly under displacement and velocity feedback control with negative gains. As the control gain decreases, the vibration isolation band is extended to lower frequency. A piezoelectric smart multidirectional vibration isolation platform model is further proposed by inclined installation of two piezoelectric stacks. A spring-like structure is designed to exert a preload pressure on these piezoelectric stacks. After optimization on the control gain, the platform can isolate vibration from 0 to 3000 Hz in multiple directions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.90
自引率
4.30%
发文量
98
审稿时长
15 weeks
期刊介绍: Journal of Low Frequency Noise, Vibration & Active Control is a peer-reviewed, open access journal, bringing together material which otherwise would be scattered. The journal is the cornerstone of the creation of a unified corpus of knowledge on the subject.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信