{"title":"长度偏抽样和I型截尾下的一致极限定理","authors":"R. Zamini, S. Jomhoori","doi":"10.37863/tsp-9378222911-13","DOIUrl":null,"url":null,"abstract":"\nIn recent years, in view of theory of empirical processes, authors have become more interested in the uniform analogue of the three fundamental theorems: the uniform law of large numbers of Glivenko-Cantelli type, the uniform central limit theorem for Donsker type and the functional law of the iterated logarithm (LIL). In this paper, under the bracketing entropy conditions, the uniform law of large numbers, uniform central limit theorem and the uniform LIL of Strassen type have been investigated in the case of length-biased and type I censoring.\n","PeriodicalId":38143,"journal":{"name":"Theory of Stochastic Processes","volume":"83 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uniform Limit Theorems under length-biased sampling and type I censoring\",\"authors\":\"R. Zamini, S. Jomhoori\",\"doi\":\"10.37863/tsp-9378222911-13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nIn recent years, in view of theory of empirical processes, authors have become more interested in the uniform analogue of the three fundamental theorems: the uniform law of large numbers of Glivenko-Cantelli type, the uniform central limit theorem for Donsker type and the functional law of the iterated logarithm (LIL). In this paper, under the bracketing entropy conditions, the uniform law of large numbers, uniform central limit theorem and the uniform LIL of Strassen type have been investigated in the case of length-biased and type I censoring.\\n\",\"PeriodicalId\":38143,\"journal\":{\"name\":\"Theory of Stochastic Processes\",\"volume\":\"83 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theory of Stochastic Processes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37863/tsp-9378222911-13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Stochastic Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37863/tsp-9378222911-13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
Uniform Limit Theorems under length-biased sampling and type I censoring
In recent years, in view of theory of empirical processes, authors have become more interested in the uniform analogue of the three fundamental theorems: the uniform law of large numbers of Glivenko-Cantelli type, the uniform central limit theorem for Donsker type and the functional law of the iterated logarithm (LIL). In this paper, under the bracketing entropy conditions, the uniform law of large numbers, uniform central limit theorem and the uniform LIL of Strassen type have been investigated in the case of length-biased and type I censoring.