Nelson Rangel-Valdez, E. Fernández, L. Cruz-Reyes, Claudia Gómez-Santillán, Lucila Morales-Rodríguez
{"title":"项目组合优化中超排序模型参数间接提取的超启发式方法","authors":"Nelson Rangel-Valdez, E. Fernández, L. Cruz-Reyes, Claudia Gómez-Santillán, Lucila Morales-Rodríguez","doi":"10.3390/mol2net-04-06123","DOIUrl":null,"url":null,"abstract":"One of the main problems that face Multi-Objective Evolutionary Algorithms (MOEAs) when approximating the best compromise solutions is a proper a priori incorporation of the Decision Maker’s (DM) preferences. Particularly, when these methods rely on outranking approaches, they need eliciting several parameters. Given that his task is of great cognitive effort for a DM, it is performed indirectly through a battery of examples that (s)he provides previously and that reflex the desired preferences. So far, only metaheuristics have been used to transform such examples into parameters’ values of specific preference models. The present research propose an architecture for a hyperheuristic that integrates characterization and performance analysis into the elicitation process. It is expected that a good combination the metaheuristic could improve the quality of parameters estimated.","PeriodicalId":20475,"journal":{"name":"Proceedings of MOL2NET 2018, International Conference on Multidisciplinary Sciences, 4th edition","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hyperheuristics for indirect elicitation of outranking model’s parameters in Project Portfolio Optimization\",\"authors\":\"Nelson Rangel-Valdez, E. Fernández, L. Cruz-Reyes, Claudia Gómez-Santillán, Lucila Morales-Rodríguez\",\"doi\":\"10.3390/mol2net-04-06123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the main problems that face Multi-Objective Evolutionary Algorithms (MOEAs) when approximating the best compromise solutions is a proper a priori incorporation of the Decision Maker’s (DM) preferences. Particularly, when these methods rely on outranking approaches, they need eliciting several parameters. Given that his task is of great cognitive effort for a DM, it is performed indirectly through a battery of examples that (s)he provides previously and that reflex the desired preferences. So far, only metaheuristics have been used to transform such examples into parameters’ values of specific preference models. The present research propose an architecture for a hyperheuristic that integrates characterization and performance analysis into the elicitation process. It is expected that a good combination the metaheuristic could improve the quality of parameters estimated.\",\"PeriodicalId\":20475,\"journal\":{\"name\":\"Proceedings of MOL2NET 2018, International Conference on Multidisciplinary Sciences, 4th edition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of MOL2NET 2018, International Conference on Multidisciplinary Sciences, 4th edition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/mol2net-04-06123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of MOL2NET 2018, International Conference on Multidisciplinary Sciences, 4th edition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/mol2net-04-06123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hyperheuristics for indirect elicitation of outranking model’s parameters in Project Portfolio Optimization
One of the main problems that face Multi-Objective Evolutionary Algorithms (MOEAs) when approximating the best compromise solutions is a proper a priori incorporation of the Decision Maker’s (DM) preferences. Particularly, when these methods rely on outranking approaches, they need eliciting several parameters. Given that his task is of great cognitive effort for a DM, it is performed indirectly through a battery of examples that (s)he provides previously and that reflex the desired preferences. So far, only metaheuristics have been used to transform such examples into parameters’ values of specific preference models. The present research propose an architecture for a hyperheuristic that integrates characterization and performance analysis into the elicitation process. It is expected that a good combination the metaheuristic could improve the quality of parameters estimated.