利用二进制线性分组码构造周期性时变卷积码

Naonori Ogasahara, Manabu Kobayashi, S. Hirasawa
{"title":"利用二进制线性分组码构造周期性时变卷积码","authors":"Naonori Ogasahara, Manabu Kobayashi, S. Hirasawa","doi":"10.1002/ECJC.20271","DOIUrl":null,"url":null,"abstract":"In 1996 Rosenthal and York proposed (time-invariant) BCH convolutional codes [4] in which the parity check matrix of a BCH code is used in the construction of the convolutional code. The lower bound on the minimum free distance of a BCH convolutional code is guaranteed by the BCH limit. In this paper we propose a periodically time-variant convolutional code that can be constructed not only using the BCH parity check matrix but using the check matrix of any binary linear block code and show that the lower bound on the minimum free distance is guaranteed by the minimum free distance of the binary linear block code. In addition, taking 12 binary linear block codes as examples, we perform comparisons of the proposed codes with BCH convolutional codes using three evaluation criteria (minimum free distance, number of delay elements, coding rate) and show that there exist proposed codes that are superior to existing ones. © 2007 Wiley Periodicals, Inc. Electron Comm Jpn Pt 3, 90(9): 31– 40, 2007; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/ecjc.20271","PeriodicalId":100407,"journal":{"name":"Electronics and Communications in Japan (Part III: Fundamental Electronic Science)","volume":"49 3 1","pages":"31-40"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The construction of periodically time‐variant convolutional codes using binary linear block codes\",\"authors\":\"Naonori Ogasahara, Manabu Kobayashi, S. Hirasawa\",\"doi\":\"10.1002/ECJC.20271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 1996 Rosenthal and York proposed (time-invariant) BCH convolutional codes [4] in which the parity check matrix of a BCH code is used in the construction of the convolutional code. The lower bound on the minimum free distance of a BCH convolutional code is guaranteed by the BCH limit. In this paper we propose a periodically time-variant convolutional code that can be constructed not only using the BCH parity check matrix but using the check matrix of any binary linear block code and show that the lower bound on the minimum free distance is guaranteed by the minimum free distance of the binary linear block code. In addition, taking 12 binary linear block codes as examples, we perform comparisons of the proposed codes with BCH convolutional codes using three evaluation criteria (minimum free distance, number of delay elements, coding rate) and show that there exist proposed codes that are superior to existing ones. © 2007 Wiley Periodicals, Inc. Electron Comm Jpn Pt 3, 90(9): 31– 40, 2007; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/ecjc.20271\",\"PeriodicalId\":100407,\"journal\":{\"name\":\"Electronics and Communications in Japan (Part III: Fundamental Electronic Science)\",\"volume\":\"49 3 1\",\"pages\":\"31-40\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronics and Communications in Japan (Part III: Fundamental Electronic Science)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/ECJC.20271\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics and Communications in Japan (Part III: Fundamental Electronic Science)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/ECJC.20271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

1996年Rosenthal和York提出了(时不变)BCH卷积码[4],其中使用了BCH码的奇偶校验矩阵来构造卷积码。BCH极限保证了BCH卷积码最小自由距离的下界。本文提出了一种周期时变卷积码,它不仅可以用BCH奇偶校验矩阵构造,而且可以用任意二进制线性分组码的校验矩阵构造,并证明了最小自由距离的下界是由二进制线性分组码的最小自由距离保证的。此外,以12个二进制线性分组码为例,采用最小自由距离、延迟元数、编码率三个评价标准,将所提出的码与BCH卷积码进行了比较,结果表明所提出的码优于现有的码。©2007 Wiley期刊公司电子工程学报,2009,31 (9):394 - 394;在线发表于Wiley InterScience (www.interscience.wiley.com)。DOI 10.1002 / ecjc.20271
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The construction of periodically time‐variant convolutional codes using binary linear block codes
In 1996 Rosenthal and York proposed (time-invariant) BCH convolutional codes [4] in which the parity check matrix of a BCH code is used in the construction of the convolutional code. The lower bound on the minimum free distance of a BCH convolutional code is guaranteed by the BCH limit. In this paper we propose a periodically time-variant convolutional code that can be constructed not only using the BCH parity check matrix but using the check matrix of any binary linear block code and show that the lower bound on the minimum free distance is guaranteed by the minimum free distance of the binary linear block code. In addition, taking 12 binary linear block codes as examples, we perform comparisons of the proposed codes with BCH convolutional codes using three evaluation criteria (minimum free distance, number of delay elements, coding rate) and show that there exist proposed codes that are superior to existing ones. © 2007 Wiley Periodicals, Inc. Electron Comm Jpn Pt 3, 90(9): 31– 40, 2007; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/ecjc.20271
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信