由多项式系数和幂级数产生的理想的湮灭性质

N. Kim, Yang Lee, M. Ziembowski
{"title":"由多项式系数和幂级数产生的理想的湮灭性质","authors":"N. Kim, Yang Lee, M. Ziembowski","doi":"10.1142/s0218196722500114","DOIUrl":null,"url":null,"abstract":"In this paper, we study the annihilating properties of ideals generated by coefficients of polynomials and power series which satisfy a structural equation. We first show that if [Formula: see text] for polynomials [Formula: see text] over any ring [Formula: see text], then for any [Formula: see text], there exist positive integers [Formula: see text] and [Formula: see text] such that [Formula: see text] and [Formula: see text], whenever [Formula: see text] and [Formula: see text]. Next we prove that if [Formula: see text] for power series [Formula: see text] over any ring [Formula: see text], then for any [Formula: see text], there exist positive integers [Formula: see text] and [Formula: see text] such that [Formula: see text] when [Formula: see text] and [Formula: see text], [Formula: see text] for each [Formula: see text].","PeriodicalId":13615,"journal":{"name":"Int. J. Algebra Comput.","volume":"47 1","pages":"237-249"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Annihilating properties of ideals generated by coefficients of polynomials and power series\",\"authors\":\"N. Kim, Yang Lee, M. Ziembowski\",\"doi\":\"10.1142/s0218196722500114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the annihilating properties of ideals generated by coefficients of polynomials and power series which satisfy a structural equation. We first show that if [Formula: see text] for polynomials [Formula: see text] over any ring [Formula: see text], then for any [Formula: see text], there exist positive integers [Formula: see text] and [Formula: see text] such that [Formula: see text] and [Formula: see text], whenever [Formula: see text] and [Formula: see text]. Next we prove that if [Formula: see text] for power series [Formula: see text] over any ring [Formula: see text], then for any [Formula: see text], there exist positive integers [Formula: see text] and [Formula: see text] such that [Formula: see text] when [Formula: see text] and [Formula: see text], [Formula: see text] for each [Formula: see text].\",\"PeriodicalId\":13615,\"journal\":{\"name\":\"Int. J. Algebra Comput.\",\"volume\":\"47 1\",\"pages\":\"237-249\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Algebra Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218196722500114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Algebra Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218196722500114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了由满足结构方程的多项式系数和幂级数产生的理想的湮灭性质。我们首先证明,如果[公式:见文]对于多项式[公式:见文]在任何环上[公式:见文],那么对于任何[公式:见文],存在正整数[公式:见文]和[公式:见文],使得[公式:见文]和[公式:见文],无论何时[公式:见文]和[公式:见文]。接下来,我们证明了对于任意环上的幂级数[公式:见文],如果[公式:见文]存在[公式:见文],那么对于任意[公式:见文],存在正整数[公式:见文]和[公式:见文],使得[公式:见文]当[公式:见文]和[公式:见文],[公式:见文]对于每一个[公式:见文]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Annihilating properties of ideals generated by coefficients of polynomials and power series
In this paper, we study the annihilating properties of ideals generated by coefficients of polynomials and power series which satisfy a structural equation. We first show that if [Formula: see text] for polynomials [Formula: see text] over any ring [Formula: see text], then for any [Formula: see text], there exist positive integers [Formula: see text] and [Formula: see text] such that [Formula: see text] and [Formula: see text], whenever [Formula: see text] and [Formula: see text]. Next we prove that if [Formula: see text] for power series [Formula: see text] over any ring [Formula: see text], then for any [Formula: see text], there exist positive integers [Formula: see text] and [Formula: see text] such that [Formula: see text] when [Formula: see text] and [Formula: see text], [Formula: see text] for each [Formula: see text].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信