{"title":"开放的问题回答在策划和提取的知识库","authors":"Anthony Fader, Luke Zettlemoyer, Oren Etzioni","doi":"10.1145/2623330.2623677","DOIUrl":null,"url":null,"abstract":"We consider the problem of open-domain question answering (Open QA) over massive knowledge bases (KBs). Existing approaches use either manually curated KBs like Freebase or KBs automatically extracted from unstructured text. In this paper, we present OQA, the first approach to leverage both curated and extracted KBs. A key technical challenge is designing systems that are robust to the high variability in both natural language questions and massive KBs. OQA achieves robustness by decomposing the full Open QA problem into smaller sub-problems including question paraphrasing and query reformulation. OQA solves these sub-problems by mining millions of rules from an unlabeled question corpus and across multiple KBs. OQA then learns to integrate these rules by performing discriminative training on question-answer pairs using a latent-variable structured perceptron algorithm. We evaluate OQA on three benchmark question sets and demonstrate that it achieves up to twice the precision and recall of a state-of-the-art Open QA system.","PeriodicalId":20536,"journal":{"name":"Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"397","resultStr":"{\"title\":\"Open question answering over curated and extracted knowledge bases\",\"authors\":\"Anthony Fader, Luke Zettlemoyer, Oren Etzioni\",\"doi\":\"10.1145/2623330.2623677\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of open-domain question answering (Open QA) over massive knowledge bases (KBs). Existing approaches use either manually curated KBs like Freebase or KBs automatically extracted from unstructured text. In this paper, we present OQA, the first approach to leverage both curated and extracted KBs. A key technical challenge is designing systems that are robust to the high variability in both natural language questions and massive KBs. OQA achieves robustness by decomposing the full Open QA problem into smaller sub-problems including question paraphrasing and query reformulation. OQA solves these sub-problems by mining millions of rules from an unlabeled question corpus and across multiple KBs. OQA then learns to integrate these rules by performing discriminative training on question-answer pairs using a latent-variable structured perceptron algorithm. We evaluate OQA on three benchmark question sets and demonstrate that it achieves up to twice the precision and recall of a state-of-the-art Open QA system.\",\"PeriodicalId\":20536,\"journal\":{\"name\":\"Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"397\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2623330.2623677\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2623330.2623677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Open question answering over curated and extracted knowledge bases
We consider the problem of open-domain question answering (Open QA) over massive knowledge bases (KBs). Existing approaches use either manually curated KBs like Freebase or KBs automatically extracted from unstructured text. In this paper, we present OQA, the first approach to leverage both curated and extracted KBs. A key technical challenge is designing systems that are robust to the high variability in both natural language questions and massive KBs. OQA achieves robustness by decomposing the full Open QA problem into smaller sub-problems including question paraphrasing and query reformulation. OQA solves these sub-problems by mining millions of rules from an unlabeled question corpus and across multiple KBs. OQA then learns to integrate these rules by performing discriminative training on question-answer pairs using a latent-variable structured perceptron algorithm. We evaluate OQA on three benchmark question sets and demonstrate that it achieves up to twice the precision and recall of a state-of-the-art Open QA system.