Helen J. Wang, Xiaofeng Fan, Jon Howell, Collin Jackson
{"title":"MashupOS中web浏览器的保护和通信抽象","authors":"Helen J. Wang, Xiaofeng Fan, Jon Howell, Collin Jackson","doi":"10.1145/1294261.1294263","DOIUrl":null,"url":null,"abstract":"Web browsers have evolved from a single-principal platform on which one site is browsed at a time into a multi-principal platform on which data and code from mutually distrusting sites interact programmatically in a single page at the browser. Today's \"Web 2.0\" applications (or mashups) offer rich services, rivaling those of desktop PCs. However, the protection andcommunication abstractions offered by today's browsers remain suitable onlyfor a single-principal system--either no trust through completeisolation between principals (sites) or full trust by incorporating third party code as libraries. In this paper, we address this deficiency by identifying and designing the missing abstractions needed for a browser-based multi-principal platform. We have designed our abstractions to be backward compatible and easily adoptable. We have built a prototype system that realizes almost all of our abstractions and their associated properties. Our evaluation shows that our abstractions make it easy to build more secure and robust client-side Web mashups and can be easily implemented with negligible performance overhead.","PeriodicalId":20672,"journal":{"name":"Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles","volume":"30 1","pages":"1-16"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"149","resultStr":"{\"title\":\"Protection and communication abstractions for web browsers in MashupOS\",\"authors\":\"Helen J. Wang, Xiaofeng Fan, Jon Howell, Collin Jackson\",\"doi\":\"10.1145/1294261.1294263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Web browsers have evolved from a single-principal platform on which one site is browsed at a time into a multi-principal platform on which data and code from mutually distrusting sites interact programmatically in a single page at the browser. Today's \\\"Web 2.0\\\" applications (or mashups) offer rich services, rivaling those of desktop PCs. However, the protection andcommunication abstractions offered by today's browsers remain suitable onlyfor a single-principal system--either no trust through completeisolation between principals (sites) or full trust by incorporating third party code as libraries. In this paper, we address this deficiency by identifying and designing the missing abstractions needed for a browser-based multi-principal platform. We have designed our abstractions to be backward compatible and easily adoptable. We have built a prototype system that realizes almost all of our abstractions and their associated properties. Our evaluation shows that our abstractions make it easy to build more secure and robust client-side Web mashups and can be easily implemented with negligible performance overhead.\",\"PeriodicalId\":20672,\"journal\":{\"name\":\"Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles\",\"volume\":\"30 1\",\"pages\":\"1-16\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"149\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1294261.1294263\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1294261.1294263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Protection and communication abstractions for web browsers in MashupOS
Web browsers have evolved from a single-principal platform on which one site is browsed at a time into a multi-principal platform on which data and code from mutually distrusting sites interact programmatically in a single page at the browser. Today's "Web 2.0" applications (or mashups) offer rich services, rivaling those of desktop PCs. However, the protection andcommunication abstractions offered by today's browsers remain suitable onlyfor a single-principal system--either no trust through completeisolation between principals (sites) or full trust by incorporating third party code as libraries. In this paper, we address this deficiency by identifying and designing the missing abstractions needed for a browser-based multi-principal platform. We have designed our abstractions to be backward compatible and easily adoptable. We have built a prototype system that realizes almost all of our abstractions and their associated properties. Our evaluation shows that our abstractions make it easy to build more secure and robust client-side Web mashups and can be easily implemented with negligible performance overhead.