压力控制树脂传递模塑(PC-RTM)的实验与数值研究

IF 1.8 Q3 ENGINEERING, MANUFACTURING
Julian Seuffert, P. Rosenberg, L. Kärger, F. Henning, M. H. Kothmann, G. Deinzer
{"title":"压力控制树脂传递模塑(PC-RTM)的实验与数值研究","authors":"Julian Seuffert, P. Rosenberg, L. Kärger, F. Henning, M. H. Kothmann, G. Deinzer","doi":"10.1080/20550340.2020.1805689","DOIUrl":null,"url":null,"abstract":"Abstract To increase the use of fiber reinforced lightweight structural components in the automotive industry, their manufacturing processes have to obtain demanding economic requirements. One possibility is to use Compression Resin Transfer Molding (CRTM), which is fast and can be highly automated. One disadvantage can be the very high cavity pressure during injection. To avoid this disadvantage, a pressure-controlled RTM (PC-RTM) process was developed. PC-RTM uses a variable mold gap height and an embedded pressure sensor to control the cavity pressure actively during mold filling. In this work, we investigate this process by experiments and simulations with varying initial mold gap and controlled cavity pressure. We show that PC-RTM is a viable manufacturing process with short cycle times and high robustness. Furthermore, the simulations are validated by comparison to the experiments and show the same process characteristics. Graphical Abstract","PeriodicalId":7243,"journal":{"name":"Advanced Manufacturing: Polymer & Composites Science","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2020-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Experimental and numerical investigations of pressure-controlled resin transfer molding (PC-RTM)\",\"authors\":\"Julian Seuffert, P. Rosenberg, L. Kärger, F. Henning, M. H. Kothmann, G. Deinzer\",\"doi\":\"10.1080/20550340.2020.1805689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract To increase the use of fiber reinforced lightweight structural components in the automotive industry, their manufacturing processes have to obtain demanding economic requirements. One possibility is to use Compression Resin Transfer Molding (CRTM), which is fast and can be highly automated. One disadvantage can be the very high cavity pressure during injection. To avoid this disadvantage, a pressure-controlled RTM (PC-RTM) process was developed. PC-RTM uses a variable mold gap height and an embedded pressure sensor to control the cavity pressure actively during mold filling. In this work, we investigate this process by experiments and simulations with varying initial mold gap and controlled cavity pressure. We show that PC-RTM is a viable manufacturing process with short cycle times and high robustness. Furthermore, the simulations are validated by comparison to the experiments and show the same process characteristics. Graphical Abstract\",\"PeriodicalId\":7243,\"journal\":{\"name\":\"Advanced Manufacturing: Polymer & Composites Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2020-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Manufacturing: Polymer & Composites Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/20550340.2020.1805689\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Manufacturing: Polymer & Composites Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/20550340.2020.1805689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 9

摘要

摘要为了增加纤维增强轻量化结构件在汽车工业中的应用,其制造工艺必须获得苛刻的经济性要求。一种可能性是使用压缩树脂传递模塑(CRTM),它速度快,可以高度自动化。一个缺点是注射时腔内压力非常高。为了避免这一缺点,开发了压力控制RTM (PC-RTM)工艺。PC-RTM采用可变模隙高度和嵌入式压力传感器,在充模过程中主动控制型腔压力。在这项工作中,我们通过实验和模拟研究了不同初始模具间隙和控制型腔压力的这一过程。我们证明PC-RTM是一种可行的制造工艺,具有短周期和高鲁棒性。仿真结果与实验结果进行了比较,结果与实验结果一致。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental and numerical investigations of pressure-controlled resin transfer molding (PC-RTM)
Abstract To increase the use of fiber reinforced lightweight structural components in the automotive industry, their manufacturing processes have to obtain demanding economic requirements. One possibility is to use Compression Resin Transfer Molding (CRTM), which is fast and can be highly automated. One disadvantage can be the very high cavity pressure during injection. To avoid this disadvantage, a pressure-controlled RTM (PC-RTM) process was developed. PC-RTM uses a variable mold gap height and an embedded pressure sensor to control the cavity pressure actively during mold filling. In this work, we investigate this process by experiments and simulations with varying initial mold gap and controlled cavity pressure. We show that PC-RTM is a viable manufacturing process with short cycle times and high robustness. Furthermore, the simulations are validated by comparison to the experiments and show the same process characteristics. Graphical Abstract
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
0.00%
发文量
11
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信