{"title":"无穷区间上具有积分边界条件的分数阶微分系统正解的单调迭代格式","authors":"Yaohong Li, W. Cheng, Jiafa Xu","doi":"10.2298/FIL2013399L","DOIUrl":null,"url":null,"abstract":"In this paper, using the monotone iterative technique and the Banach contraction mapping principle, we study a class of fractional differential system with integral boundary on an infinite interval. Some explicit monotone iterative schemes for approximating the extreme positive solutions and the unique positive solution are constructed.","PeriodicalId":8426,"journal":{"name":"arXiv: Functional Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Monotone iterative schemes for positive solutions of a fractional differential system with integral boundary conditions on an infinite interval\",\"authors\":\"Yaohong Li, W. Cheng, Jiafa Xu\",\"doi\":\"10.2298/FIL2013399L\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, using the monotone iterative technique and the Banach contraction mapping principle, we study a class of fractional differential system with integral boundary on an infinite interval. Some explicit monotone iterative schemes for approximating the extreme positive solutions and the unique positive solution are constructed.\",\"PeriodicalId\":8426,\"journal\":{\"name\":\"arXiv: Functional Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Functional Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/FIL2013399L\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/FIL2013399L","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Monotone iterative schemes for positive solutions of a fractional differential system with integral boundary conditions on an infinite interval
In this paper, using the monotone iterative technique and the Banach contraction mapping principle, we study a class of fractional differential system with integral boundary on an infinite interval. Some explicit monotone iterative schemes for approximating the extreme positive solutions and the unique positive solution are constructed.