无穷区间上具有积分边界条件的分数阶微分系统正解的单调迭代格式

Yaohong Li, W. Cheng, Jiafa Xu
{"title":"无穷区间上具有积分边界条件的分数阶微分系统正解的单调迭代格式","authors":"Yaohong Li, W. Cheng, Jiafa Xu","doi":"10.2298/FIL2013399L","DOIUrl":null,"url":null,"abstract":"In this paper, using the monotone iterative technique and the Banach contraction mapping principle, we study a class of fractional differential system with integral boundary on an infinite interval. Some explicit monotone iterative schemes for approximating the extreme positive solutions and the unique positive solution are constructed.","PeriodicalId":8426,"journal":{"name":"arXiv: Functional Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Monotone iterative schemes for positive solutions of a fractional differential system with integral boundary conditions on an infinite interval\",\"authors\":\"Yaohong Li, W. Cheng, Jiafa Xu\",\"doi\":\"10.2298/FIL2013399L\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, using the monotone iterative technique and the Banach contraction mapping principle, we study a class of fractional differential system with integral boundary on an infinite interval. Some explicit monotone iterative schemes for approximating the extreme positive solutions and the unique positive solution are constructed.\",\"PeriodicalId\":8426,\"journal\":{\"name\":\"arXiv: Functional Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Functional Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/FIL2013399L\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/FIL2013399L","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文利用单调迭代技术和Banach收缩映射原理,研究了一类在无穷区间上具有积分边界的分数阶微分系统。构造了逼近极值正解和唯一正解的显式单调迭代格式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Monotone iterative schemes for positive solutions of a fractional differential system with integral boundary conditions on an infinite interval
In this paper, using the monotone iterative technique and the Banach contraction mapping principle, we study a class of fractional differential system with integral boundary on an infinite interval. Some explicit monotone iterative schemes for approximating the extreme positive solutions and the unique positive solution are constructed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信