一种优化的高分辨率胸部CT图像分割超像素聚类方法

R. Rosa, M. C. d'Ornellas
{"title":"一种优化的高分辨率胸部CT图像分割超像素聚类方法","authors":"R. Rosa, M. C. d'Ornellas","doi":"10.3233/978-1-61499-564-7-1045","DOIUrl":null,"url":null,"abstract":"Lung segmentation is a fundamental step in many image analysis applications for lung diseases and abnormalities in thoracic computed tomography (CT). However, due to the large variations in pathology that may be present in thoracic CT images, it is difficult to extract the lung regions accurately. A major insight to deal with this problem is the existence of new approaches to cope with quality and performance. This poster presents an optimized superpixel clustering approach for high-resolution chest CT segmentation. The proposed algorithm is compared against some super-pixel algorithms while a performance evaluation is carried out in terms of boundary recall and under-segmentation error metrics. The over-segmentation results on a CT Emphysema Database demonstrate that our approach shows better performance than other three state-of-the-art superpixel methods.","PeriodicalId":79446,"journal":{"name":"Medinfo. MEDINFO","volume":"76 1","pages":"1045"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Optimized Superpixel Clustering Approach for High-Resolution Chest CT Image Segmentation\",\"authors\":\"R. Rosa, M. C. d'Ornellas\",\"doi\":\"10.3233/978-1-61499-564-7-1045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lung segmentation is a fundamental step in many image analysis applications for lung diseases and abnormalities in thoracic computed tomography (CT). However, due to the large variations in pathology that may be present in thoracic CT images, it is difficult to extract the lung regions accurately. A major insight to deal with this problem is the existence of new approaches to cope with quality and performance. This poster presents an optimized superpixel clustering approach for high-resolution chest CT segmentation. The proposed algorithm is compared against some super-pixel algorithms while a performance evaluation is carried out in terms of boundary recall and under-segmentation error metrics. The over-segmentation results on a CT Emphysema Database demonstrate that our approach shows better performance than other three state-of-the-art superpixel methods.\",\"PeriodicalId\":79446,\"journal\":{\"name\":\"Medinfo. MEDINFO\",\"volume\":\"76 1\",\"pages\":\"1045\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medinfo. MEDINFO\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/978-1-61499-564-7-1045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medinfo. MEDINFO","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/978-1-61499-564-7-1045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

肺分割是许多肺部疾病和胸部计算机断层扫描(CT)异常图像分析应用的基本步骤。然而,由于胸部CT图像中可能存在很大的病理变化,因此很难准确地提取肺区域。处理这个问题的一个主要观点是,存在处理质量和性能的新方法。这张海报提出了一种优化的高分辨率胸部CT分割的超像素聚类方法。将该算法与一些超像素算法进行了比较,并从边界召回率和分割不足误差指标两方面对算法进行了性能评价。在CT肺气肿数据库上的过分割结果表明,我们的方法比其他三种最先进的超像素方法表现出更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Optimized Superpixel Clustering Approach for High-Resolution Chest CT Image Segmentation
Lung segmentation is a fundamental step in many image analysis applications for lung diseases and abnormalities in thoracic computed tomography (CT). However, due to the large variations in pathology that may be present in thoracic CT images, it is difficult to extract the lung regions accurately. A major insight to deal with this problem is the existence of new approaches to cope with quality and performance. This poster presents an optimized superpixel clustering approach for high-resolution chest CT segmentation. The proposed algorithm is compared against some super-pixel algorithms while a performance evaluation is carried out in terms of boundary recall and under-segmentation error metrics. The over-segmentation results on a CT Emphysema Database demonstrate that our approach shows better performance than other three state-of-the-art superpixel methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信