深势:多体势能面的一般表示

Jiequn Han, Linfeng Zhang, R. Car, E. Weinan
{"title":"深势:多体势能面的一般表示","authors":"Jiequn Han, Linfeng Zhang, R. Car, E. Weinan","doi":"10.4208/CICP.OA-2017-0213","DOIUrl":null,"url":null,"abstract":"We present a simple, yet general, end-to-end deep neural network representation of the potential energy surface for atomic and molecular systems. This methodology, which we call Deep Potential, is \"first-principle\" based, in the sense that no ad hoc approximations or empirical fitting functions are required. The neural network structure naturally respects the underlying symmetries of the systems. When tested on a wide variety of examples, Deep Potential is able to reproduce the original model, whether empirical or quantum mechanics based, within chemical accuracy. The computational cost of this new model is not substantially larger than that of empirical force fields. In addition, the method has promising scalability properties. This brings us one step closer to being able to carry out molecular simulations with accuracy comparable to that of quantum mechanics models and computational cost comparable to that of empirical potentials.","PeriodicalId":8424,"journal":{"name":"arXiv: Computational Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"153","resultStr":"{\"title\":\"Deep Potential: a general representation of a many-body potential energy surface\",\"authors\":\"Jiequn Han, Linfeng Zhang, R. Car, E. Weinan\",\"doi\":\"10.4208/CICP.OA-2017-0213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a simple, yet general, end-to-end deep neural network representation of the potential energy surface for atomic and molecular systems. This methodology, which we call Deep Potential, is \\\"first-principle\\\" based, in the sense that no ad hoc approximations or empirical fitting functions are required. The neural network structure naturally respects the underlying symmetries of the systems. When tested on a wide variety of examples, Deep Potential is able to reproduce the original model, whether empirical or quantum mechanics based, within chemical accuracy. The computational cost of this new model is not substantially larger than that of empirical force fields. In addition, the method has promising scalability properties. This brings us one step closer to being able to carry out molecular simulations with accuracy comparable to that of quantum mechanics models and computational cost comparable to that of empirical potentials.\",\"PeriodicalId\":8424,\"journal\":{\"name\":\"arXiv: Computational Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"153\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Computational Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4208/CICP.OA-2017-0213\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computational Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4208/CICP.OA-2017-0213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 153

摘要

我们提出了一个简单的,但一般的,端到端的深度神经网络表示原子和分子系统的势能面。这种方法,我们称之为深电位,是基于“第一性原理”的,从某种意义上说,不需要特别的近似或经验拟合函数。神经网络结构自然地尊重系统的潜在对称性。当在各种各样的例子上进行测试时,Deep Potential能够在化学精度范围内重现原始模型,无论是基于经验还是基于量子力学。新模型的计算成本并不比经验力场的计算成本大多少。此外,该方法具有良好的可扩展性。这使我们更接近于能够进行分子模拟,其精度可与量子力学模型相媲美,计算成本可与经验势相媲美。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Potential: a general representation of a many-body potential energy surface
We present a simple, yet general, end-to-end deep neural network representation of the potential energy surface for atomic and molecular systems. This methodology, which we call Deep Potential, is "first-principle" based, in the sense that no ad hoc approximations or empirical fitting functions are required. The neural network structure naturally respects the underlying symmetries of the systems. When tested on a wide variety of examples, Deep Potential is able to reproduce the original model, whether empirical or quantum mechanics based, within chemical accuracy. The computational cost of this new model is not substantially larger than that of empirical force fields. In addition, the method has promising scalability properties. This brings us one step closer to being able to carry out molecular simulations with accuracy comparable to that of quantum mechanics models and computational cost comparable to that of empirical potentials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信