{"title":"泊松切片的$\\log$辛几何","authors":"Peter Crooks, M. Roser","doi":"10.4310/jsg.2022.v20.n1.a4","DOIUrl":null,"url":null,"abstract":"Our paper develops a theory of Poisson slices and a uniform approach to their partial compactifications. The theory in question is loosely comparable to that of symplectic cross-sections in real symplectic geometry.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"The $\\\\log$ symplectic geometry of Poisson slices\",\"authors\":\"Peter Crooks, M. Roser\",\"doi\":\"10.4310/jsg.2022.v20.n1.a4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Our paper develops a theory of Poisson slices and a uniform approach to their partial compactifications. The theory in question is loosely comparable to that of symplectic cross-sections in real symplectic geometry.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/jsg.2022.v20.n1.a4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jsg.2022.v20.n1.a4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Our paper develops a theory of Poisson slices and a uniform approach to their partial compactifications. The theory in question is loosely comparable to that of symplectic cross-sections in real symplectic geometry.