质量问题:通过概率数据流管理支持具有质量意识的普及应用程序

Christian Kuka, D. Nicklas
{"title":"质量问题:通过概率数据流管理支持具有质量意识的普及应用程序","authors":"Christian Kuka, D. Nicklas","doi":"10.1145/2611286.2611292","DOIUrl":null,"url":null,"abstract":"Many pervasive computing applications need sensor data streams, which can vary significantly in accuracy. Depending on the application, deriving information (e.g., higher-level context) from low-quality sensor data might lead to wrong decisions or even critical situations. Thus, it is important to control the quality throughout the whole data stream processing, from the raw sensor data up to the derived information, e.g., a complex event. In this paper, we present a uniform meta data model to represent sensor data and information quality at all levels of processing; we show how this meta data model can be integrated in a data stream processing engine to ease the development of quality-aware applications; and we present an approach to learn probability distributions of incoming sensor data which needs no prior knowledge. We demonstrate and evaluate our approach in a real-world scenario.","PeriodicalId":92123,"journal":{"name":"Proceedings of the ... International Workshop on Distributed Event-Based Systems. International Workshop on Distributed Event-Based Systems","volume":"253 1","pages":"1-12"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Quality matters: supporting quality-aware pervasive applications by probabilistic data stream management\",\"authors\":\"Christian Kuka, D. Nicklas\",\"doi\":\"10.1145/2611286.2611292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many pervasive computing applications need sensor data streams, which can vary significantly in accuracy. Depending on the application, deriving information (e.g., higher-level context) from low-quality sensor data might lead to wrong decisions or even critical situations. Thus, it is important to control the quality throughout the whole data stream processing, from the raw sensor data up to the derived information, e.g., a complex event. In this paper, we present a uniform meta data model to represent sensor data and information quality at all levels of processing; we show how this meta data model can be integrated in a data stream processing engine to ease the development of quality-aware applications; and we present an approach to learn probability distributions of incoming sensor data which needs no prior knowledge. We demonstrate and evaluate our approach in a real-world scenario.\",\"PeriodicalId\":92123,\"journal\":{\"name\":\"Proceedings of the ... International Workshop on Distributed Event-Based Systems. International Workshop on Distributed Event-Based Systems\",\"volume\":\"253 1\",\"pages\":\"1-12\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... International Workshop on Distributed Event-Based Systems. International Workshop on Distributed Event-Based Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2611286.2611292\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... International Workshop on Distributed Event-Based Systems. International Workshop on Distributed Event-Based Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2611286.2611292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

许多普适计算应用程序需要传感器数据流,这些数据流的准确性可能会有很大差异。根据不同的应用,从低质量的传感器数据中获取信息(例如,更高级别的上下文)可能会导致错误的决策甚至是危急的情况。因此,控制整个数据流处理的质量是很重要的,从原始传感器数据到派生信息,例如,一个复杂的事件。在本文中,我们提出了一个统一的元数据模型来表示各级处理的传感器数据和信息质量;我们展示了如何将这个元数据模型集成到数据流处理引擎中,以简化质量感知应用程序的开发;提出了一种不需要先验知识就能学习传感器输入数据的概率分布的方法。我们在一个真实的场景中演示和评估我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quality matters: supporting quality-aware pervasive applications by probabilistic data stream management
Many pervasive computing applications need sensor data streams, which can vary significantly in accuracy. Depending on the application, deriving information (e.g., higher-level context) from low-quality sensor data might lead to wrong decisions or even critical situations. Thus, it is important to control the quality throughout the whole data stream processing, from the raw sensor data up to the derived information, e.g., a complex event. In this paper, we present a uniform meta data model to represent sensor data and information quality at all levels of processing; we show how this meta data model can be integrated in a data stream processing engine to ease the development of quality-aware applications; and we present an approach to learn probability distributions of incoming sensor data which needs no prior knowledge. We demonstrate and evaluate our approach in a real-world scenario.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信